Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T05:09:36.368Z Has data issue: false hasContentIssue false

Microstructural properties and formation mechanisms of GaN nanorods grown on Al2O3 (0001) substrates

Published online by Cambridge University Press:  31 January 2011

Jeong Y. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
Tae W. Kang
Affiliation:
Quantum Functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Taewhan Kim*
Affiliation:
Advanced Semiconductor Research Center, Division of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, Korea
*
a) Address all correspondence to this author. e-mail: twk@hanyang.ac.kr
Get access

Abstract

X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images showed that one-dimensional GaN nanorods with [0001]-oriented single-crystalline wurtzite structures were grown on Al2O3 (0001) substrates by hydride vapor-phase epitaxy without a catalyst. The tip morphology of the GaN nanorods became flat with increasing temperature difference between the gas mixing and the substrate zones. The gas mixing temperature significantly affected the formation of the nanorods, and the substrate temperature influenced the morphology and the strain of the GaN nanorods near the GaN/Al2O3 heterointerface. The strain and the stress existing in the GaN layer near the heterointerface were decreased with increasing growth rate. The formation mechanisms of the GaN nanorods grown on the Al2O3 (0001) substrates are described on the basis of the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yoshida, H., Yamashita, Y., Kuwabara, M., and Kan, H.: A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat. Pho-tonics 2, 551 (2008).CrossRefGoogle Scholar
2Lu, C., Xie, X., Zhu, X., Wang, D., Khan, A., Diagne, I., and Mohammad, S.N.: High-temperature electrical transport in AlxGa1–xN/GaNmodulation doped field-effect transistors. J. Appl. Phys. 100, 113729 (2006).CrossRefGoogle Scholar
3Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S.J., and Rinzler, A.G.: Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Lett. 4, 911 (2004).CrossRefGoogle Scholar
4Schremer, A.T., Smart, J.A., Wang, Y., Ambacher, O., MacDonald, N.C., and Shealy, J.R.: High electron mobility AlGaN/ GaN heterostructure on (111) Si. Appl. Phys. Lett. 76, 736 (2000).CrossRefGoogle Scholar
5Fujii, T., Gao, Y., Sharma, R., Hu, E.L., DenBaars, S.P., and Nakamura, S.: Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84, 855 (2004).CrossRefGoogle Scholar
6Huang, H.H., Zeng, H.Y., Lee, C.L., Lee, S.C., and Lee, W.I.: Extended microtunnels in GaN prepared by wet chemical etch. Appl. Phys. Lett. 89, 202115 (2006).CrossRefGoogle Scholar
7Dhar, S., Pérez, L., Brandt, O., Trampert, A., Ploog, K.H., Keller, J., and Beschoten, B.: Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K. Phys. Rev. B 72, 245203 (2005).CrossRefGoogle Scholar
8Linthicum, K., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Batchelor, D., and Davis, R.: Pendeoepitaxy of gallium nitride thin films. Appl. Phys. Lett. 75, 196 (1999).CrossRefGoogle Scholar
9Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K.: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 72, 211 (1998).CrossRefGoogle Scholar
10Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).CrossRefGoogle ScholarPubMed
11Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
12Law, M., Goldberger, J., and Yang, P.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 (2004).CrossRefGoogle Scholar
13Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
14Lu, J.G., Chang, P., and Fan, Z.: Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng., R 52, 49 (2006).CrossRefGoogle Scholar
15Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y., Goldberger, J., and Yang, P.: Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063 (2003).CrossRefGoogle Scholar
16Chen, H.Y., Lin, H.W., Shen, C.H., and Gwo, S.: Structure and photoluminescence properties of epitaxially oriented GaN nano-rods grown on Si (111) by plasma-assisted molecular-beam epi-taxy. Appl. Phys. Lett. 89, 243105 (2006).CrossRefGoogle Scholar
17Kim, H.M., Kim, D.S., Kim, D.Y., Kang, T.W., Cho, Y.H., and Chung, K.S.: Growth and characterization of single-crystal GaN nanorods by hydride vapor-phase epitaxy. Appl. Phys. Lett. 81, 2193 (2002).CrossRefGoogle Scholar
18Seryogin, G., Shalish, I., Moberlychan, W., and Narayanamurti, V.: Catalytic hydride vapour phase epitaxy growth of GaN nano-wires. Nanotechnology 16, 2342 (2005).CrossRefGoogle Scholar
19Lee, K.H., Kwon, Y.H., Ryu, S.Y., Kang, T.W., Jung, J.H., Lee, D.U., and Kim, T.W.: Microstructural properties and atomic arrangements of GaN nanorods grown on Si (111) substrates by using hydride vapor-phase epitaxy. J. Cryst. Growth 310, 2977 (2008).CrossRefGoogle Scholar
20Aujol, E., Napierala, J., Trassoudaine, A., Gil-Lafon, E., and Cadoret, R.: Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen. J. Cryst. Growth 222, 538 (2001).CrossRefGoogle Scholar
21Lee, K.H., Lee, J.Y., Jeon, H.C., Kang, T.W., Kwon, H.Y., and Kim, T.W.: Initial formation mechanisms of (Ga1–xMnx)N nano-rods grown on Al2O3 (0001) substrates. J. Mater. Res. 23, 3275 (2008).CrossRefGoogle Scholar
22Harutyunyan, V.S., Aivazyan, A.P., Weber, E.R., Kim, Y., Park, Y., and Subramanya, S.G.: High-resolution x-ray diffraction strain–stress analysis of GaN/sapphire heterostructures. J. Phys. D: Appl. Phys. 34, A35 (2001).CrossRefGoogle Scholar
23Debnath, R.K., Meijers, R., Richter, T., Stoica, T., Calarco, R., and Lüth, H.: Mechanism of molecular-beam-epitaxy growth of GaN nanowires on Si (111). Appl. Phys. Lett. 90, 123117 (2007).CrossRefGoogle Scholar
24Hashiguchi, G., Goda, T., Hosogi, M., Hirano, K., Kaji, N., Baba, Y., Kakushima, K., and Fujita, H.: DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal. Chem. 75, 4347 (2003).CrossRefGoogle ScholarPubMed