Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T08:59:09.343Z Has data issue: false hasContentIssue false

Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2

Published online by Cambridge University Press:  31 January 2011

Aiguo Feng
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Z. A. Munir*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
*
b)Address correspondence to this author.
Get access

Abstract

The simultaneous synthesis and densification of the ternary Ti3SiC2 was investigated by the field-activated, pressure-assisted combustion method. Depending on temperature and time at temperature, relatively pure and nearly fully dense materials can be synthesized by this approach. The optimum conditions to produce this phase were a reaction temperature of 1525 °C and a time at temperature of 2 h. The product contained TiC as a second phase at a level of ≤2 mol%. The resulting ternary phase has typically elongated grains which were about 25 μm in size. Within a range of applied force of 1–4 N, the microhardness of the product was relatively constant, ranging from 6 to 7 GPa. Investigations on the thermal and chemical stabilities of the ternary were also conducted. Vacuum annealing at temperatures of 1600 and 2000 °C resulted in the formation of a surface layer of TiC, while the air annealing at 1000 °C resulted in the formation of TiO2. Oxidation studies on the prepared Ti3SiC2 were made at temperatures ranging from 800 to 1100 °C. The results suggest a two-mechanism process, one dominating in the approximate range of 800–950 °C and the other in the range 950–1100 °C with corresponding activation energies of 137.7 and 312.5 kJ·mol−1. The results are explained in terms of two proposed reactions on the basis of microprobe analyses.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jeitschko, W. and Nowotny, H., Monatsch. Chem. 98, 329 (1967).CrossRefGoogle Scholar
2.Lis, J., Pampuch, R., Piekarczyk, J., and Stobirsski, L., Ceram. Int. 19, 219 (1993).CrossRefGoogle Scholar
3.Lis, J., Miyamoyto, Y., Pampuch, R., and Tanihata, K., Mater. Lett. 22, 163 (1995).CrossRefGoogle Scholar
4.Tong, X., Okano, T., Iseki, T., and Yano, T., J. Mater. Sci. 30, 3087 (1995).CrossRefGoogle Scholar
5.Radhakrishnan, R., Heneger, C. H. Jr, Brimball, J. L., and Bhaduri, S. B., Scripta Mater. 34, 1809 (1996).CrossRefGoogle Scholar
6.Barsoum, M. W. and El-Raghy, T., J. Am. Ceram. Soc. 79, 1953 (1996).CrossRefGoogle Scholar
7.Barsoum, M. W. and El-Raghy, T., J. Mater. Synth. Process. 5, 197 (1997).Google Scholar
8.Arunajatesan, S. and Carim, A.H., J. Am. Ceram. Soc. 78, 667 (1995).CrossRefGoogle Scholar
9.Morgiel, J., Lis, J., and Pampuch, R., Mater. Lett. 27, 85 (1996).CrossRefGoogle Scholar
10.Goto, T. and Hirai, T., Mater. Res. Bull. 22, 1195 (1987).CrossRefGoogle Scholar
11.Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., J. Euro. Ceram. Soc. 5, 283 (1989).CrossRefGoogle Scholar
12.Racault, C., Langlais, F., and Naslain, R., J. Mater. Sci. 29, 3384 (1994).CrossRefGoogle Scholar
13.Barsoum, M. W., El-Raghy, T., and Ogbuji, L. U., J. Electrochem. Soc. 144, 25082516 (1997).CrossRefGoogle Scholar
14.Pampuch, R., Lis, J., and Stobierski, L., Int. J. SHS 1, 78 (1992).Google Scholar
15.Wakelkamp, W.J.J, van Lou, F.J.J., and Metselaar, R., J. Euro. Ceram. Soc. 8, 135 (1991).CrossRefGoogle Scholar
16.Sambasivan, S. and Petuskey, W. T., J. Mater. Res. 7, 1473 (1992).CrossRefGoogle Scholar
17.Nickl, J. J., Schweitzer, K. K., and Luxenberg, P., J. Less-Comm. Met. 26, 335 (1972).CrossRefGoogle Scholar
18.Sambasivan, S., Ph.D. Thesis, Arizona State University (1990).Google Scholar
19.El-Raghy, T. and Barsoum, M. W., J. Appl. Phys. 83, 112119 (1998).CrossRefGoogle Scholar
20.Petuskey, W.T., private communication.Google Scholar
21.Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rept. 3, 227365 (1989).CrossRefGoogle Scholar
22.Munir, Z.A., Lai, W., and Ewald, K. H., U.S. Patent No. 5,380,409, January 10, 1995.Google Scholar
23.Feng, A. and Munir, Z.A., Metall. Mater. Trans. 26B, 581 (1995).CrossRefGoogle Scholar
24.Feng, A. and Munir, Z.A., Metall. Mater. Trans. 26B, 587 (1995).CrossRefGoogle Scholar
25.Orru, R., Cao, G., and Munir, Z.A., unpublished.Google Scholar
26.Xue, H. and Munir, Z.A., Scripta Metall. Mater. 35, 979 (1996).CrossRefGoogle Scholar
27.Shon, I. J., Munir, Z. A., and Yamazaki, K., J. Am. Ceram. Soc. 79, 1875 (1996).CrossRefGoogle Scholar
28.Munir, Z.A., Shon, I.J., and Yamazaki, K., U.S. Patent, approved January 6, 1998.Google Scholar
29.El-Raghy, T., Presentation at the Amer. Ceram. Soc., Cocoa Beach Meeting, January, 1997.Google Scholar
30.Edington, J. W., Practical Electron Microscopy (Van Nostrand Reinhold Co., New York, 1976).Google Scholar
31.Pampuch, R., Lis, J., Piekarczyk, J., and Stobierski, L., J. Mater. Synth. Process. 1, 93 (1993).Google Scholar
32.Low, I. M., Lee, S.K., Lawn, B.R., and Barsoum, M.W., J. Am. Ceram. Soc. 81, 225228 (1998).CrossRefGoogle Scholar
33.JANAF Thermochemical Tables, edited by Stull, D. R. and Prophet, H. (National Standard Reference Data Series, National Bureau of Standards, Washington, DC, 1971).Google Scholar
34.Hauffe, K., Oxidation of Metals (Plenum Press, New York, 1965).Google Scholar
35.Jacobson, N., J. Am. Ceram. Soc. 76, 3 (1993).CrossRefGoogle Scholar