Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T14:54:28.822Z Has data issue: false hasContentIssue false

Evidence for continuous areas of crystalline β–C3N4 in sputter-deposited thin films

Published online by Cambridge University Press:  31 January 2011

A. K. M. S. Chowdhury*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
D. C. Cameron
Affiliation:
Materials Processing Research Centre, Dublin City University, Dublin 9, Ireland
M. S. J. Hashmi
Affiliation:
Materials Processing Research Centre, Dublin City University, Dublin 9, Ireland
J. M. Gregg*
Affiliation:
Condensed Matter Physics & Materials Science Research Division, School of Mathematics & Physics, The Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
*
a)Address all correspondence to this author.
Get access

Abstract

Carbon nitride films have been deposited using Penning-type opposed target dc reactive sputtering. These films show large (>10 μm2) continuous areas of nanocrystalline material in an amorphous matrix. Electron diffraction shows the nanocrystalline areas to have crystallography consistent with the β–C3N4 phase. Film chemistry analysis using Rutherford backscattering and Raman spectroscopy indicates that only carbon, nitrogen, and trace levels of hydrogen are present. Given this film chemistry and the fit of diffraction data to that predicted for the β–C3N4 structure, it seems likely that the sputtering parameters used have, indeed, produced continuous regions of the elusive β–C3N4 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, A.Y. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
2.Yu, K.M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A.Y., and Wu, I. C., Phys. Rev. B 49, 5034 (1994).CrossRefGoogle Scholar
3.Ze-Bo, Z., Yin-An, L., Sie-Shen, X., and Guo-Zhen, Y., J. Mater. Sci. Lett. 14, 1742 (1995).CrossRefGoogle Scholar
4.Niu, C., Lu, Y.Z., and Lieber, C. M., Science 261, 334 (1993).CrossRefGoogle Scholar
5.Wang, E.G., Chen, Y., and Guo, L., Physica Scripta T69, 108 (1997).CrossRefGoogle Scholar
6.Chowdhury, A.K.M.S, Cameron, D.C., Monclus, M., Murphy, M.J., Barradas, N. P., Gilvarry, J., and Hashmi, M. S. J., Thin Solid Films 308–309, 130 (1997).CrossRefGoogle Scholar
7.Barradas, N.P., Jeynes, C., and Webb, R. P., Appl. Phys. Lett. 71, 291293 (1997).CrossRefGoogle Scholar
8.Chen, L.C., Bhusari, D.M., Yang, C. Y., Chen, K.H., Chuang, T.J., Lin, M.C., Chen, C. K., and Huang, Y.F., Thin Solid Films 303, 6675 (1997).CrossRefGoogle Scholar
9.Zheng, W.T., Sjostrom, H., Ivanov, I., Xing, K. Z., Broitman, E., Salaneck, W.R., Greene, J. E., and Sundgren, J-E., J. Vac. Sci. Technol. A 14 (5), 26962701 (1996).CrossRefGoogle Scholar
10.Xiaoming, H.E., Wenzhi, L., and Hengde, L., Chin. Sci. Bull. 40 (20), 17521757 (1995).Google Scholar
11.Szmidt, J., Werbowy, A., Zdunek, K., Sokowska, A., Konwerska-Hrabowska, J., and Mitura, S., Diam. Relat. Mater. 5, 564569 (1996).CrossRefGoogle Scholar