Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-29T02:15:44.025Z Has data issue: false hasContentIssue false

Disorientations in dislocation structures: Formation and spatial correlation

Published online by Cambridge University Press:  31 January 2011

Wolfgang Pantleon
Affiliation:
Materials Research Department, Risϕ National Laboratory, Frederiksborgvej 399, 4000 Roskilde, Denmark
Get access

Abstract

During plastic deformation, dislocation boundaries are formed and orientation differences across them arise. Two different causes lead to the formation of two kinds of deformation-induced boundaries: a statistical trapping of dislocations in incidental dislocation boundaries and a difference in the activation of slip systems on both sides of geometrically necessary boundaries. On the basis of these mechanisms, the occurrence of disorientations across both types of dislocation boundaries is modeled by dislocation dynamics. The resulting evolution of the disorientation angles with strain is in good agreement with experimental observations. The theoretically obtained distribution functions for the disorientation angles describe the experimental findings well and explain their scaling behavior. The model also predicts correlations between disorientations in neighboring boundaries, and evidence for their existence is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, Q. and Hansen, N., Scr. Metall. Mater. 32, 1289 (1995).CrossRefGoogle Scholar
2.Liu, Q. and Hansen, N., Phys. Status Solidi A 149, 187 (1995).CrossRefGoogle Scholar
3.Kuhlmann-Wilsdorf, D. and Hansen, N., Scr. Metall. Mater. 25, 1557 (1991).CrossRefGoogle Scholar
4.Hughes, D.A., Liu, Q., Chrzan, D.C., and Hansen, N., Acta Mater. 45, 105 (1997).CrossRefGoogle Scholar
5.Pantleon, W., Scr. Mater. 35, 511 (1996).CrossRefGoogle Scholar
6.Hughes, D.A., Chrzan, D.C., Liu, Q., and Hansen, N., Phys. Rev. 81, 4664 (1998).Google Scholar
7.Kocks, U.F. and Chandra, H., Acta Metall. 30, 695 (1982).CrossRefGoogle Scholar
8.Liu, Q., Jensen, D. Juul, and Hansen, N., Acta Mater. 46, 5819 (1998).CrossRefGoogle Scholar
9.Wert, J.A., Liu, Q., and Hansen, N., Acta Mater. 43, 4153 (1995).CrossRefGoogle Scholar
10.Kuhlmann-Wilsdorf, D., Phys. Status Solidi A 149, 255 (1995).Google Scholar
11.Kawasaki, Y. and Takeuchi, T., Scr. Metall. 14, 183 (1980).CrossRefGoogle Scholar
12.Kozlov, E.V., Koneva, N.A., Teplyakova, L.A., Lychagin, D., and Trishkina, L.I., Mater. Sci. Eng. A 319–321, 261 (2001).CrossRefGoogle Scholar
13.Read, W.T. and Shockley, W., Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
14.Pantleon, W., Act Mater. 46, 451 (1998).CrossRefGoogle Scholar
15.Nabarro, F.R.N., Scr. Metall. Mater. 30, 1085 (1994).CrossRefGoogle Scholar
16.Pantleon, W., in Proc. 20th Intern. Risø Symp.: Deformation-Induced Microstructures: Analysis and Relation to Properties, edited by Bilde-Sørensen, J.B., Carstensen, J.V., Hansen, N., Jensen, D. Juul, Leffers, T., Pantleon, W., Pedersen, O.B., and Winther, G. (Risø National Laboratory, Roskilde, Denmark, 1999), p. 123.Google Scholar
17.Pantleon, W., Mater. Sci. Eng. A 319–321, 211 (2001).CrossRefGoogle Scholar
18.Sedlacek, R., Kratochvil, J., and Blum, W., Phys. Status Solidi A 186, 1 (2001).3.0.CO;2-R>CrossRefGoogle Scholar
19.Marcinowski, M.J., in Fundamental Aspects of Dislocation Theory, edited by Simmons, J.A., Wit, R. de, and Bullough, R. (Nat. Bur. Stand. (U.S.) Spec. Publ. 317, Washington, DC, 1970), Vol. 1, p. 531.Google Scholar
20.Risken, H., The Fokker-Planck Equation, 2nd ed. (Springer-Verlag, Berlin, Germany, 1989).Google Scholar
21.Miodownik, M.A., Smereka, P., Srolovitz, D.J., and Holm, E.A., Proc. R. Soc. London A 457, 1807 (2001).CrossRefGoogle Scholar
22.Pantleon, W., Mater. Sci. Eng. A 234–236, 567 (1997).CrossRefGoogle Scholar
23.Pantleon, W. and Hansen, N., Acta Mater. 49, 1479 (2001).CrossRefGoogle Scholar
24.Schaeben, H., J. Appl. Crystallogr. 26, 112 (1993).CrossRefGoogle Scholar
25.Mika, D.P. and Dawson, P.R., Acta Mater. 47, 1355 (1999).CrossRefGoogle Scholar
26.Zaiser, M., Mater. Sci. Eng., A 309–310, 304 (2001).CrossRefGoogle Scholar
27.Pantleon, W. and Stoyan, D., Acta Mater. 48, 3005 (2000); 48, 4179 (E) (2000).CrossRefGoogle Scholar
28.Jensen, D. Juul, Ultramicroscopy 67, 25 (1997).CrossRefGoogle Scholar
29.Pantleon, W., in Proc. 21th Intern. Risø Symp.: Recrystallization–Fundamental Aspects and Relations to Deformation Microstructure, edited by Hansen, N., Huang, X., Jensen, D. Juul, Lauridsen, E.M., Leffers, T., Pantleon, W., Sabin, T.J., and Wert, J.A. (Risø National Laboratory, Roskilde, Denmark, 2000), p. 497.Google Scholar
30.Pantleon, W. and Hansen, N., Mater. Sci. Eng., A 309–310, 246 (2001).CrossRefGoogle Scholar
31.Hjelen, J., Ørsund, R., Hoel, E., Runde, P., Furu, T., and Nes, E., Textures Microstruct. 20, 29 (1993).CrossRefGoogle Scholar