Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T10:23:18.779Z Has data issue: false hasContentIssue false

Perovskite crystallization of sol-gel processed (Pb,La0.06,Gd0.02)(Zr0.65,Ti0.35)O3 thin films: Dielectric, ferroelectric and optical properties

Published online by Cambridge University Press:  31 January 2011

Reji Thomas
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563 8577, Japan
Shoichi Mochizuki
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563 8577, Japan
Toshiyuki Mihara
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563 8577, Japan
Tadashi Ishida
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563 8577, Japan
Get access

Abstract

Ferroelectric lead lanthanum gadolinium zirconium titanate (PLGZT) thin films were prepared by the sol-gel spin coating technique. Three-step preannealing heat treatment was employed to prepare crack-free films. Various types of substrates, and the effects of the seed layer and annealing temperature on the perovskite crystallization were studied. Phase-pure perovskite crystallization was obtained by annealing the films on PbTiO3/Pt/Ti/Si substrates at 700 °C for 30 min. The Auger electron spectroscopy depth profile showed uniform elemental distribution along the thickness except the surface and interface regions. Dielectric constant and loss tangent at 10 kHz were 1000 and 0.06, respectively. Remanent polarization (Pr) and coercive field (Ec) were 11.8 μC/cm2 and 71 kV/cm, respectively. The direct band gap energy was 3.55 eV for the amorphous films. The refractive index and extinction coefficient at 610 nm for amorphous PLGZT films were 2.14 and 0.0028, respectively. The dispersion of the refractive index was interpreted in terms of a single electronic oscillator at 6.06 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
2.Ramesh, R., Aggarwal, S., and Auciello, O., Mater. Sci. Eng. 32, 191 (2001).CrossRefGoogle Scholar
3.Xu, Y. and Mackenzie, J.D., Integrated Ferroelectrics 1, 17 (1992).CrossRefGoogle Scholar
4.Thomas, R. and Dube, D.C., Jpn. J. Appl. Phys. 36, 7337 (1997).CrossRefGoogle Scholar
5.Zhu, D., Li, Q., Lai, T., Mo, D., Xu, Y., and Mackenzie, J.D., Thin Solid Films 313, 210 (1998).CrossRefGoogle Scholar
6.Lee, J.S., Kim, C.J., Yoon, D.S., Choi, C.G., Kim, J.M., and No, K., Jpn. J. Appl. Phys. 33, 260 (1994).CrossRefGoogle Scholar
7.Tohge, N., Takahashi, S., and Minami, T., J. Am. Ceram. Soc. 74, 67 (1991).CrossRefGoogle Scholar
8.Malic, B., J. Sol-Gel Sci. Technol. 13, 865 (1998).CrossRefGoogle Scholar
9.West, R.W. and Xu, J., Ferroelectrics 93, 21 (1989).Google Scholar
10.Simoes, A.Z., Gonzalez, A.H.M., Zaghete, M.A., Cilense, M., Varela, J.A., and Stojanovic, B.D., Appl. Surf. Sci. 172, 68 (2001).CrossRefGoogle Scholar
11.Lakeman, C.D.E., Campion, J-F., and Payne, D.A., in Ferroelectric Thin Films, edited by Bhalla, A.S. and Nair, K.M. Ceram. Trans. 25 (The American Ceramic Society, Westerville, OH), p. 413.Google Scholar
12.Yang, W-D., Ceram. Int. 27, 373 (2001).CrossRefGoogle Scholar
13.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Components (Wiley, New York, 1986).Google Scholar
14.Wang, F., Wu, Y., Jiang, Z., and Zhao, L., Mater. Chem. Phys. 77, 10 (2002).CrossRefGoogle Scholar
15.Shin, J-S. and Lee, W-J., Jpn. J. Appl. Phys. 36, 6909 (1997).CrossRefGoogle Scholar
16.Mochizuki, S., Mihara, T., and Ishida, T., Ferroelectrics 225, 237 (1999).CrossRefGoogle Scholar
17.Thomas, R., Mochizuki, S., Mihara, T., and Ishida, T., Mater. Sci. Eng. B 95, 36 (2002).CrossRefGoogle Scholar
18.Dana, S.S., Etzold, K.F., and Clabes, J., J. Appl. Phys. 69, 4398 (1991).CrossRefGoogle Scholar
19.Thomas, R., Varadan, V.K., Komerneni, S., and Dube, D.C., J. Appl. Phys. 90, 1480 (2001).CrossRefGoogle Scholar
20.Tanaka, K., Higuma, Y., Yokoyama, K., and Hamakawa, Y., Jpn. J. Appl. Phys. 15, 1381 (1976).CrossRefGoogle Scholar
21.Lu, D.X., Pun, E.Y.B., Wong, E.M.W., Chung, P.S., and Lee, Z.Y., IEEE Trans. Ultra. Ferro. Freq. Con. 44, 675 (1997).CrossRefGoogle Scholar
22.Thomas, R., Mochizuki, S., Mihara, T., and Ishida, T., Thin Soild Films 413, 65 (2002).CrossRefGoogle Scholar
23.Thomas, R., and Dube, D.C., Jpn J. Appl. Phys. 39, 1771 (2000).CrossRefGoogle Scholar
24.Manifacier, J.C., Gasiot, J., and Fillard, J.P., J. Phys. E. Sci. Instr. 9, 1002 (1976).CrossRefGoogle Scholar
25.Li, H., Zhang, Y., Wen, J., Yang, S., Mo, D., Cheng, C-H., Xu, Y., and Mackenzie, J.D., Jpn. J. Appl. Phys. 39, 1180 (2000).CrossRefGoogle Scholar
26.Didominico, M. Jr., and Wemple, S.H., J. Appl. Phys. 40, 720 (1969).Google Scholar
27.Heartling, G.H., Ferroelectrics 75, 25 (1987).CrossRefGoogle Scholar
28.Thomas, R., Dube, D.C., Kamalasanan, M.N., and Chandra, S., Thin Solid Films 346, 212 (1999).CrossRefGoogle Scholar