Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T12:10:47.339Z Has data issue: false hasContentIssue false

Hardness and Young's modulus of amorphous a-SiC thin films determined by nanoindentation and bulge tests

Published online by Cambridge University Press:  03 March 2011

M.A. El Khakani
Affiliation:
INRS-Énergie et Matériaux, 1650 montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada J3X 1S2
M. Chaker
Affiliation:
INRS-Énergie et Matériaux, 1650 montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada J3X 1S2
A. Jean
Affiliation:
INRS-Énergie et Matériaux, 1650 montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada J3X 1S2
S. Boily
Affiliation:
INRS-Énergie et Matériaux, 1650 montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada J3X 1S2
J.C. Kieffer
Affiliation:
INRS-Énergie et Matériaux, 1650 montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada J3X 1S2
M.E. O'Hern
Affiliation:
Nano Instruments, Inc., P.O. Box 14211, Knoxville, Tennessee 37914
M.F. Ravet
Affiliation:
L2M/CNRS, 196 Avenue H. Ravera, B.P. 107, 92225, Bagneux Cedex, France
F. Rousseaux
Affiliation:
L2M/CNRS, 196 Avenue H. Ravera, B.P. 107, 92225, Bagneux Cedex, France
Get access

Abstract

Due to its interesting mechanical properties, silicon carbide is an excellent material for many applications. In this paper, we report on the mechanical properties of amorphous hydrogenated or hydrogen-free silicon carbide thin films deposited by using different deposition techniques, namely plasma enhanced chemical vapor deposition (PECVD), laser ablation deposition (LAD), and triode sputtering deposition (TSD). a-SixC1−x: H PECVD, a-SiC LAD, and a-SiC TSD thin films and corresponding free-standing membranes were mechanically investigated by using nanoindentation and bulge techniques, respectively. Hardness (H), Young's modulus (E), and Poisson's ratio (v) of the studied silicon carbide thin films were determined. It is shown that for hydrogenated a-SixC1−x: H PECVD films, both hardness and Young's modulus are dependent on the film composition. The nearly stoichiometric a-SiC: H films present higher H and E values than the Si-rich a-SixC1−x: H films. For hydrogen-free a-SiC films, the hardness and Young's modulus were as high as about 30 GPa and 240 GPa, respectively. Hydrogen-free a-SiC films present both hardness and Young's modulus values higher by about 50% than those of hydrogenated a-SiC: H PECVD films. By using the FTIR absorption spectroscopy, we estimated the Si-C bond densities (NSiC) from the Si-C stretching absorption band (centered around 780 cm−1), and were thus able to correlate the observed mechanical behavior of a-SiC films to their microstructure. We indeed point out a constant-plus-linear variation of the hardness and Young's modulus upon the Si-C bond density, over the NSiC investigated range [(4–18) × 1022 bond · cm−3], regardless of the film composition or the deposition technique.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schmidt, M. P., Solomon, I., Tran-Quoc, H., and Bullot, J., J. Non-Cryst. Solids 77/78, 849 (1985).CrossRefGoogle Scholar
2Mahan, A. H., Williamson, D. L., Ruth, M., and Raboisson, P., J. Non-Cryst. Solids 77/78, 861 (1985).CrossRefGoogle Scholar
3Tawada, Y., Kondo, M., Okamoto, H., and Hamadawa, Y., Solar Energy Mater. 6, 299 (1982).CrossRefGoogle Scholar
4Bullot, J. and Schmidt, M. P., Phys. Status Solidi B 143, 345 (1987).CrossRefGoogle Scholar
5Godfrey, D. J., Met. Mater. 2 (10), 305 (1968).Google Scholar
6Edington, J. W., Rowcliffe, D. J., and Henshall, J. L., Powder Met. Int. 7 (2), 82 and 136 (1975).Google Scholar
7Gorancher, B., Reichelt, K., Chevallier, J., Hornshoj, P., Dimigen, H., and Hübsch, H., Thin Solid Films 139, 275 (1986).CrossRefGoogle Scholar
8LeContellec, M., Richard, J., Guivrach, A., Ligeon, E., and Fontenille, J., Thin Solid Films 58, 407 (1979).CrossRefGoogle Scholar
9Chaker, M., Boily, S., Diawara, Y., El Khakani, M. A., Gat, E., Jean, A., Lafontaine, H., Pépin, H., Voyer, J., Kieffer, J. C., Haghiri-Gosnet, A. M., Ladan, F. R., Ravet, M. F., Chen, Y., and Rousseaux, F., J. Vac. Sci. Technol. B 10 (6), 3191 (1992).CrossRefGoogle Scholar
10Wells, G. M., Palmer, S., Cerrina, F., Purdes, A., and Gnade, B., J. Vac. Sci. Technol. B 8, 1575 (1990).CrossRefGoogle Scholar
11Windischmann, H., J. Vac. Sci. Technol. A 9 (4), 2459 (1991).CrossRefGoogle Scholar
12Gmemlin Handbook of Inorganic Chemistry, 8th ed. Silicon-Suppl., edited by Kinschstein, G. (Springer-Verlag, Berlin, 1984), Vol. B2.Google Scholar
13Tong, L., Mehregany, M., and Matus, L. G., Appl. Phys. Lett. 60 (24), 2992 (1992).CrossRefGoogle Scholar
14Shimkunas, A. R., Mayer, P. E., Borget, L. P., Post, R. S., Smith, L., Davis, R. F., Wells, G. M., Cerrina, F., and Mclntosh, R. B., J. Vac. Sci. Technol. B 9, 3258 (1991).CrossRefGoogle Scholar
15Bayne, M. A., Kurokawa, Z., Okorie, N. U., Roe, B. D., Johnson, L., and Moss, R. W., Thin Solid Films 107, 201 (1983).CrossRefGoogle Scholar
16Jean, A., Chaker, M., Diawara, Y., Leung, P. K., Gat, E., Mercier, P. P., Pépin, H., Gujrathi, S., Ross, G. G., and Kieffer, J. C., J. Appl. Phys. 72 (7), 3110 (1992).CrossRefGoogle Scholar
17Boily, S., Chaker, M., Pépin, H., Kerdja, T., Voyer, J., Jean, A., Kieffer, J. C., Leung, P., Cerrina, F., and Wells, G., J. Vac. Sci. Technol. B 9 (6), 3254 (1991).CrossRefGoogle Scholar
18Haghiri-Gosnet, A. M., Rousseaux, F., Kebabi, B., Ladan, F. R., Mayeux, C., Madouri, A., Decanini, D., Bourneix, J., Carcenac, F., Launois, H., Wisniewski, B., Got, E., and Durand, J., J. Vac. Sci. Technol. B 8, 1565 (1990).CrossRefGoogle Scholar
19Beams, J. W., in Structure and Properties of Thin Films, edited by Neugebauer, C. A., Newkirk, J. B., and Vermilyea, D. A. (John Wiley and Sons, New York, 1959), p. 183.Google Scholar
20Nano Instruments, Inc., Knoxville, TN.Google Scholar
21Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
22Sneddon, I. N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
23General Electric Fused Quartz Products Technical Data, general catalog, number 7705–7725, April 1985.Google Scholar
24Robertson, J., Prog. Solid State Chem. 21, 199 (1991).CrossRefGoogle Scholar
25CRC Handbook of Materials Science, Vol. II: Metals, Composites and Refractory Materials, edited by Lynch, Charles T. (CRC Press, Inc., Boca Raton, FL, 1975), p. 378.Google Scholar
26Koskinen, J., Soave, R. J., and Johnson, H. H., J. Vac. Sci. Technol. A 8 (3), 1422 (1990).CrossRefGoogle Scholar
27Jean, A., El Khakani, M. A., Chaker, M., Boily, S., Gat, E., Kieffer, J. C., Pépin, H., Ravet, M. F., and Rousseaux, F., Appl. Phys. Lett. 62 (18), 2200 (1993).CrossRefGoogle Scholar
28Gat, E., El Khakani, M. A., Chaker, M., Jean, A., Boily, S., Pépin, H., Kieffer, J. C., Durand, J., Cros, B., Rousseaux, F., and Gujrathi, S., J. Mater. Res. 7, 2478 (1992).CrossRefGoogle Scholar
29Guivrach, A., Richard, J., LeContellec, M., Ligeon, E., and Fontenille, J., J. Appl. Phys. 51 (4), 2167 (1980).CrossRefGoogle Scholar
30Basa, D. K. and Smith, F. W., Thin Solid Films 192, 121 (1990).CrossRefGoogle Scholar
31Wieder, H., Cardona, M., and Guarnieri, C. R., Phys. Status Solidi 92 (6), 99 (1979).CrossRefGoogle Scholar
32Windischmann, H. and Epps, G. F., J. Appl. Phys. 68, 5665 (1990).CrossRefGoogle Scholar