Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T02:47:17.005Z Has data issue: false hasContentIssue false

Division of the hardness of molybdenum into rate-dependent and rate-independent components

Published online by Cambridge University Press:  03 March 2011

D.S. Stone
Affiliation:
Department of Materials Science and Engineering, The University of Wisconsin at Madison, 1509 University Avenue, Madison, Wisconsin 53706
K.B. Yoder
Affiliation:
Materials Science Program, The University of Wisconsin at Madison, 1509 University Avenue, Madison, Wisconsin 53706
Get access

Abstract

The hardness, H, and rate sensitivity of the hardness, m = ∂ ln H/∂ ln ∊eff|xp, where ∊eff is an effective strain rate and xp the plastic depth, are measured in molybdenum at room and low temperature (160 and 170 K) using as-received and annealed specimens. Based on these measurements it is found that H separates into two components: one depending on indentation rate and temperature, and the other depending on the starting state of the material. An activation volume is defined, v = 9kT/mH, which falls within the range of values derived from other experimental techniques. The values of m obtained from indentation creep, indentation load relaxation, and indentation rate-change experiments agree closely with each other provided a consistent analysis is used. The results of these experiments suggest that the rate- and temperature-dependence of the hardness can be used to discriminate between strengthening mechanisms at low temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yoder, K. B., Stone, D. S., Sproul, W. D., and Rudnik, P. S., in Proc.1992 Conference on Advanced Earth-to-Orbit Propulsion Technology, edited by Richmond, R. J. and Wu, S. T. (Nasa Conference Publication 3174, 1992), Vol. II, p. 315.Google Scholar
2Yoder, K. B. and Stone, D. S., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993).Google Scholar
3Atkins, A. G., in The Science of Hardness Testing and Its Research Applications, edited by Westbrook, J. H. and Conrad, H. (ASM, Metals Park, OH, 1973), p. 223.Google Scholar
4Chu, S. N. G. and Li, J. C. M., J. Mater. Sci. 12, 2200 (1977).CrossRefGoogle Scholar
5Mayo, M. J. and Nix, W. D., in Proceedings of the 8th International Conference on the Strength of Metals and Alloys, edited by Kettunen, P. O., Lepisto, T. K., and Lehtonen, M. E. (Pergamon Press, Oxford, UK, 1988), p. 1415.Google Scholar
6LaFontaine, W. R., Yost, B., Black, R. D., and Li, C-Y., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 165.Google Scholar
7Raman, V. and Berriche, R., J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
8Atkins, A. G., Sliverio, A., and Tabor, D., J. Inst. Metals 94, 369 (1966).Google Scholar
9Lucas, B. N. and Oliver, W. C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 337.Google Scholar
10Hannula, S-P., Stone, D. S., and Li, C-Y., in Electronic Packaging Materials Science, edited by Giess, E. A., Tu, K-N., and Uhlmann, D. R. (Mater. Res. Soc. Symp. Proc. 40, Pittsburgh, PA, 1985), p. 217.Google Scholar
11Li, W. B., Henshall, J. L., Hooper, R. M., and Easterling, K. E., Acta Metall. et Mater. 39, 3099 (1991).CrossRefGoogle Scholar
12Li, W. B. and Warren, R., Acta Metall. et Mater. 41, 3065 (1993).CrossRefGoogle Scholar
13Conrad, H., in High Strength Materials, edited by Zackay, V. F. (Wiley, New York, 1965), p. 436.Google Scholar
14Taylor, G., Prog. Mater. Sci. 36, 29 (1992).CrossRefGoogle Scholar
15Briggs, T. L. and Campbell, J. D., Acta Metall. 20, 711 (1972).CrossRefGoogle Scholar
16Weihs, T. P. and Pethica, J. B., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 325.Google Scholar
17Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
18Loubet, J. L., Georges, J. M., and Meille, G., in ASTM STP 889, edited by Blau, P. J. and Lawn, B. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 72.Google Scholar
19Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
20Blanchard, J. and Yu, W-P., unpublished work.Google Scholar
21Fleischer, R. L., J. Mater. Res. 8, 59 (1993).CrossRefGoogle Scholar
22Chang, Y. A., Pike, L. M., Liu, C. T., Bilbrey, A. R., and Stone, D. S., J. Intermetallics 1, 107 (1993).CrossRefGoogle Scholar