Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T17:17:19.224Z Has data issue: false hasContentIssue false

Defects and transport in PrxCe1−xO2−δ: Composition trends

Published online by Cambridge University Press:  08 June 2012

Sean R. Bishop*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi-ku Fukuoka, 819-0395, Japan
Todd S. Stefanik
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Harry L. Tuller
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Address all correspondence to this author. e-mail: bishop@i2cner.kyushu-u.ac.jp
Get access

Abstract

Nonstoichiometric mixed ionic and electronic conductors (MIECs) find use as oxygen permeation membranes, cathodes in solid oxide fuel cells, oxygen storage materials in three-way catalysts, and chemoresistive gas sensors. Praseodymium–cerium oxide (PrxCe1−xO2−δ) solid solutions exhibit MIEC behavior in a relatively high and readily accessible oxygen partial pressure () regime and as such serve as model systems for investigating the correlation between thermodynamic and kinetic properties as well as exhibiting high performance figures of merit in the above applications. In this paper, we extend recently published results for Pr0.1Ce0.9O2−δ to include values of x = 0, 0.002, 0.008, 0.1, and 0.20 (in PrxCe1−xO2−δ) to test how both defect and transport parameters depend on Pr fraction. Important observed trends with increasing x include increases in oxygen ion migration energy and MIEC and reductions in vacancy formation and Pr ionization energies. The implications these changes have for potential applications of PrxCe1−xO2−δ are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inaba, H. and Tagawa, H.: Ceria-based solid electrolytes. Solid State Ionics 83, 116 (1996).CrossRefGoogle Scholar
2.Steele, B.C.H.: Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95110 (2000).CrossRefGoogle Scholar
3.Tuller, H.L. and Nowick, A.S.: Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J. Electrochem. Soc. 126, 209217 (1979).CrossRefGoogle Scholar
4.Tuller, H.L. and Nowick, A.S.: Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38, 859867 (1977).CrossRefGoogle Scholar
5.Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 47914843 (2004).CrossRefGoogle ScholarPubMed
6.Chatzichristodoulou, C., Hendriksen, P.V., and Hagen, A.: Defect chemistry and thermomechanical properties of Ce0.8PrxTb0.2−xO2. J. Electrochem. Soc. 157, B299B307 (2010).CrossRefGoogle Scholar
7.Bishop, S.R., Stefanik, T.S., and Tuller, H.L.: Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2-δ. Phys. Chem. Chem. Phys. 13, 1016510173 (2011).CrossRefGoogle Scholar
8.Tuller, H.L. and Bishop, S.R.: Point defects in oxides: Tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369398 (2011).CrossRefGoogle Scholar
9.Stefanik, T.S. and Tuller, H.L.: Nonstoichiometry and defect chemistry in praseodymium-cerium oxide. J. Electroceram. 13, 775778 (2004).CrossRefGoogle Scholar
10.Chen, D., Bishop, S.R., and Tuller, H.L.: Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. J. Electroceram. 28, 6269 (2012) DOI: 10.1007/s10832-011-9678-z.CrossRefGoogle Scholar
11.Bishop, S.R., Kim, J.J., Thompson, N., Chen, D., Kuru, Y., Stefanik, T., and Tuller, H.L.: Mechanical, electrical, and optical properties of (Pr, Ce)O2 solid solutions: Kinetic studies. ECS Trans. 35, 11371144 (2011).CrossRefGoogle Scholar
12.Marrocchelli, D., Bishop, S.R., Tuller, H.L., and Yildiz, B.: Understanding chemical expansion in non-stoichiometric oxides: Ceria and zirconia case studies. Adv. Funct. Mater. DOI: 10.1002/adfm.201102648.Google Scholar
13.Bishop, S.R., Tuller, H.L., Kuru, Y., and Yildiz, B.: Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2-δ: Correlation with defect equilibrium model. J. Eur. Ceram. Soc. 31, 23512356 (2011).CrossRefGoogle Scholar
14.Kuru, Y., Bishop, S.R., Kim, J.J., Yildiz, B., and Tuller, H.L.: Chemomechanical properties and microstructural stability of nanocrystalline Pr-doped ceria: An in situ x-ray diffraction investigation. Solid State Ionics 193, 14 (2011).CrossRefGoogle Scholar
15.Stefanik, T.S.: Electrical properties and defect structures of praseodymium-cerium oxide solid solutions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004.Google Scholar
16.Van Herle, J., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M.: Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte. Solid State Ionics 86–88, 12551258 (1996).CrossRefGoogle Scholar
17.Chatzichristodoulou, C. and Hendriksen, P.V.: Oxygen nonstoichiometry and defect chemistry modeling of Ce0.8Pr0.2O2-d. J. Electrochem. Soc. 157, B481B489 (2010).CrossRefGoogle Scholar
18.Bishop, S.R., Duncan, K.L., and Wachsman, E.D.: Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Mater. 57, 35963605 (2009).CrossRefGoogle Scholar
19.Faber, J., Geoffroy, C., Roux, A., Sylvestre, A., and Abelard, P.: A systematic investigation of the dc electrical conductivity of rare earth doped ceria. Appl. Phys. A 49, 225232 (1989).CrossRefGoogle Scholar
20.Lai, W. and Haile, S.M.: Impedance spectroscopy as a tool for chemical and electrochemical mixed conductors: A case study of ceria. J. Am. Ceram. Soc. 88, 29792997 (2005).CrossRefGoogle Scholar
21.Gerhardt-Anderson, R. and Nowick, A.S.: Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5, 547550 (1981).CrossRefGoogle Scholar
22.Butler, V., Catlow, C.R.A., Fender, B.E.F., and Harding, J.H.: Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8, 109113 (1983).CrossRefGoogle Scholar
23.Andersson, D.A., Simak, S.I., Skorodumova, N.V., Abrikosov, I.A., and Johansson, B.: Optimization of ionic conductivity in doped Ceria. Proc. Natl. Acad. Sci. U.S.A. 103, 35183521 (2006).CrossRefGoogle ScholarPubMed
24.Kilner, J.A. and Waters, C.D.: The effects of dopant cation oxygen vacancy complexes on the anion transport properties of nonstoichiometric fluorite oxides. Solid State Ionics 6, 253259 (1982).CrossRefGoogle Scholar
25.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751767 (1976).CrossRefGoogle Scholar
26.Panhans, M.A. and Blumenthal, R.N.: A thermodynamic and electrical conductivity study of nonstoichiometric cerium oxide. Solid State Ionics 60, 279298 (1993).CrossRefGoogle Scholar
27.Xiong, Y-P., Kishimoto, H., Yamaji, K., Yoshinaga, M., Horita, T., Brito, M.E., and Yokokawa, H.: Electronic conductivity of pure ceria. Solid State Ionics 192, 476479 (2011).CrossRefGoogle Scholar
28.Yahiro, H., Eguchi, Y., Eguchi, K., and Arai, H., Oxygen Ion Conductivity of the Ceria Samarium Oxide System with Fluorite Structure, J. Appl. Electrochem. 18, 527531 (1988).CrossRefGoogle Scholar
29.Kudo, T. and Obayashi, H., Mixed electrical conduction in the fluorite-type Ce1-xGdxO2-x/2, J. Electrochem. Soc. 123, 415419 (1975).CrossRefGoogle Scholar
30.Yahiro, H., Ohuchi, T., Eguchi, K., and Arai, H., Electrical properties and microstructure in the system ceria alkaline-earth oxide, J. Mater. Sci. 23, 10361041 (1988).CrossRefGoogle Scholar
31.Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., and Wachsman, E. D.: Role of point defects in the physical properties of fluorite oxides. J. Am. Ceram. Soc. 89, 31623166 (2006).CrossRefGoogle Scholar