Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-28T19:16:11.729Z Has data issue: false hasContentIssue false

Doping properties of hydrogen in ZnO

Published online by Cambridge University Press:  03 July 2012

L. Weston
Affiliation:
School of Physics and Advanced Materials, University of Technology, Sydney, Broadway, NSW 2007, Australia
C. Ton-That*
Affiliation:
School of Physics and Advanced Materials, University of Technology, Sydney, Broadway, NSW 2007, Australia
M.R. Phillips
Affiliation:
School of Physics and Advanced Materials, University of Technology, Sydney, Broadway, NSW 2007, Australia
*
a)Address all correspondence to this author. e-mail: cuong.ton-that@uts.edu.au
Get access

Abstract

The doping properties and stability of hydrogen in zinc oxide (ZnO) crystals have been investigated by cathodoluminescence (CL) spectroscopy. Hydrogen incorporation was achieved by hydrogen plasma at 200 °C. The ZnO near-band-edge (NBE) peak is dramatically enhanced, while the green emission at 2.4 eV is quenched with increasing hydrogen incorporation. These effects are attributed to hydrogen passivating green luminescence centers, which are most likely negatively charged zinc vacancy defects. E-beam irradiation of H-doped ZnO crystals by an intense electron beam with μW power reverses the hydrogen doping process. This effect is ascribed to the dissociation of H-related defects, formation of “hidden” H2, and electromigration of H+ under the influence of the local trapped charge-induced electric field. These results highlight the potential to modify the local luminescent properties of ZnO by e-beam irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
2.Ton-That, C., Phillips, M.R., Foley, M., Moody, S.J., and Stampfl, A.P.J.: Surface electronic properties of ZnO nanoparticles. Appl. Phys. Lett. 92, 261916 (2008).CrossRefGoogle Scholar
3.Janotti, A. and Van de Walle, C.G.: Hydrogen multicenter bonds. Nat. Mater. 6, 44 (2007).CrossRefGoogle Scholar
4.Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000).CrossRefGoogle Scholar
5.Cai, P.F., You, J.B., Zhang, X.W., Dong, J.J., Yang, X.L., Yin, Z.G., and Chen, N.F.: Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J. Appl. Phys. 105, 083713 (2009).CrossRefGoogle Scholar
6.Zhou, Z., Kato, K., Komaki, T., Yoshino, M., Yukawa, H., Morinaga, M., and Morita, K.: Effects of dopants and hydrogen on the electrical conductivity of ZnO. J. Eur. Ceram. Soc. 24, 139 (2004).CrossRefGoogle Scholar
7.Lavrov, E.V., Borrnert, F., and Weber, J.: Dominant hydrogen-oxygen complex in hydrothermally grown ZnO. Phys. Rev. B 71, 035205 (2005).CrossRefGoogle Scholar
8.Lavrov, E.V., Herklotz, F., and Weber, J.: Identification of two hydrogen donors in ZnO. Phys. Rev. B 79, 165210 (2009).CrossRefGoogle Scholar
9.Shi, G.A., Stavola, M., Pearton, S.J., Thieme, M., Lavrov, E.V., and Weber, J.: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005).CrossRefGoogle Scholar
10.Sekiguchi, T., Ohashi, N., and Terada, Y.: Effect of hydrogenation on ZnO luminescence. Jpn. J. Appl. Phys., Part 2 36, L289 (1997).CrossRefGoogle Scholar
11.Lin, C.C., Chen, H.P., Liao, H.C., and Chen, S.Y.: Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005).CrossRefGoogle Scholar
12.Dev, A., Niepelt, R., Richters, J.P., Ronning, C., and Voss, T.: Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation. Nanotechnology 21, 065709 (2010).CrossRefGoogle ScholarPubMed
13.Lavrov, E.V., Weber, J., Borrnert, F., Van de Walle, C.G., and Helbig, R.: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 (2002).CrossRefGoogle Scholar
14.Yacobi, B.G. and Holt, D.B.: Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York, 1990).CrossRefGoogle Scholar
15.Reynolds, D.C., Look, D.C., Jogai, B., and Morkoc, H.: Similarities in the bandedge and deep-center photoluminescence mechanisms of ZnO and GaN. Solid State Commun. 101, 643 (1997).CrossRefGoogle Scholar
16.Maeda, K., Sato, M., Niikura, I., and Fukuda, T.: Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20, S49 (2005).CrossRefGoogle Scholar
17.Wang, Y.G., Lau, S.P., Zhang, X.H., Lee, H.W., Yu, S.F., Tay, B.K., and Hng, H.H.: Evolution of visible luminescence in ZnO by thermal oxidation of zinc films. Chem. Phys. Lett. 375, 113 (2003).CrossRefGoogle Scholar
18.Hoffmann, A., Malguth, E.M., and Meyer, B.K.: Deep centers in ZnO, in Zinc Oxide: From Fundamental Properties Towards Novel Applications, edited by Klingshirn, C.F., Meyer, B.K., Waag, A., Hoffmann, A., and Geurts, J. (Springer-Verlag, Berlin Heidelberg, 2010).Google Scholar
19.Rauch, C., Gehlhoff, W., Wagner, M.R., Malguth, E., Callsen, G., Kirste, R., Salameh, B., Hoffmann, A., Polarz, S., Aksu, Y., and Driess, M.: Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals. J. Appl. Phys. 107, 024311 (2010).CrossRefGoogle Scholar
20.Garces, N.Y., Wang, L., Bai, L., Giles, N.C., Halliburton, L.E., and Cantwell, G.: Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622 (2002).CrossRefGoogle Scholar
21.Dong, Y.F., Tuomisto, F., Svensson, B.G., Kuznetsov, A.Y., and Brillson, L.J.: Vacancy defect and defect cluster energetics in ion-implanted ZnO. Phys. Rev. B 81, 081201 (2010).CrossRefGoogle Scholar
22.Lopatiuk, O., Chernyak, L., Osinsky, A., and Xie, J.Q.: Lithium-related states as deep electron traps in ZnO. Appl. Phys. Lett. 87, 214110 (2005).CrossRefGoogle Scholar
23.Shi, G.A., Stavola, M., and Fowler, W.B.: Identification of an OH-Li center in ZnO: Infrared absorption spectroscopy and density functional theory. Phys. Rev. B 73, 081201 (2006).CrossRefGoogle Scholar
24.Johansen, K.M., Christensen, J.S., Monakhov, E.V., Kuznetsov, A.Y., and Svensson, B.G.: Deuterium diffusion and trapping in hydrothermally grown single crystalline ZnO. Appl. Phys. Lett. 93, 152109 (2008).CrossRefGoogle Scholar
25.Johansen, K.M., Haug, H., Lund, E., Monakhov, E.V., and Svensson, B.G.: Thermal stability of the OH-Li complex in hydrothermally grown single crystalline ZnO. Appl. Phys. Lett. 97, 211907 (2010).CrossRefGoogle Scholar
26.Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Strassburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V.: Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B 241, 231 (2004).CrossRefGoogle Scholar
27.Cazaux, J.: e-Induced secondary electron emission yield of insulators and charging effects. Nucl. Instrum. Methods Phys. Res., Sect. B 244, 307 (2006).CrossRefGoogle Scholar
28.Bang, J. and Chang, K.J.: Atomic structure and diffusion of hydrogen in ZnO. J. Korean Phys. Soc. 55, 98 (2009).CrossRefGoogle Scholar
29.Wardle, M.G., Goss, J.P., and Briddon, P.R.: First-principles study of the diffusion of hydrogen in ZnO. Phys. Rev. Lett. 96, 205504 (2006).CrossRefGoogle ScholarPubMed
30.Lavrov, E.V., Herklotz, F., and Weber, J.: Identification of hydrogen molecules in ZnO. Phys. Rev. Lett. 102, 185502 (2009).CrossRefGoogle ScholarPubMed
31.Toth, M., Fleischer, K., and Phillips, M.R.: Direct experimental evidence for the role of oxygen in the luminescent properties of GaN. Phys. Rev. B 59, 1575 (1999).CrossRefGoogle Scholar
32.Janotti, A. and Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).CrossRefGoogle Scholar