Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T04:58:06.668Z Has data issue: false hasContentIssue false

Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation

Published online by Cambridge University Press:  31 July 2012

Dongjo Oh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Danijel Gostovic
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Eric D. Wachsman*
Affiliation:
University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742
*
a)Address all correspondence to this author. e-mail: ewach@umd.edu
Get access

Abstract

Elemental enrichment behavior on the surface of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) was investigated in order to understand potential degradation mechanism of solid oxide fuel cell cathodes. Surface morphological changes were examined using scanning electron microscopy after heat treatment in the temperature range of 600–900 °C. Submicron-sized precipitates were formed on grain surfaces after heat treatment. Their shapes appeared to be aligned along the surface orientations of the underlying grains. Auger electron spectroscopy and transmission electron microscopy characterization revealed that the precipitate was strontium (Sr)-oxygen (O) based. The formation of Sr–O precipitates was found to increase with increasing temperature and oxygen partial pressure. A defect chemistry model is presented based on the observed phenomena.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Simner, S.P., Anderson, M.D., Engelhard, M.H., and Stevenson, J.W.: Degradation mechanisms of La-Sr-Co-Fe-O3SOFC cathodes. Electrochem. Solid-State Lett. 9, A478 (2006).CrossRefGoogle Scholar
2.Tietz, F., Mai, A., and Stover, D.: From powder properties to fuel cell performance - A holistic approach for SOFC cathode development. Solid State Ionics 179, 1509 (2008).CrossRefGoogle Scholar
3.Bucher, E. and Sitte, W.: Long-term stability of the oxygen exchange properties of (La, Sr)1−z(Co, Fe)O3−δ in dry and wet atmospheres. Solid State Ionics 192, 480 (2011).CrossRefGoogle Scholar
4.Heide, P.A.W.v.d.: Systematic x-ray photoelectron spectroscopic study of La1−xSrx-based perovskite-type oxides. Surf. Interface Anal. 33, 414 (2002).CrossRefGoogle Scholar
5.Viitanen, M.M., von Welzenis, R.G., Brongersma, H.H., and van Berkel, F.P.F.: Silica poisoning of oxygen membranes. Solid State Ionics 150, 223 (2002).CrossRefGoogle Scholar
6.Tanaka, H. and Misono, M.: Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci. 5, 381 (2001).CrossRefGoogle Scholar
7.Serra, J.M., Vert, V.B., Betz, M., Haanappel, V.A.C., Meulenberg, W.A., and Tietz, F.: Screening of A-substitution in the system A0.68Sr0.3Fe0.8Co0.2O3-δ for SOFC cathodes. J. Electrochem. Soc. 155, B207 (2008).CrossRefGoogle Scholar
8.Pena, M.A. and Fierro, J.L.G.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).CrossRefGoogle ScholarPubMed
9.Shimizu, T.: Effect of electronic structure and tolerance factor on Co oxidation activity of perovskite oxides. Chem. Lett. 1, 1 (1980).CrossRefGoogle Scholar
10.Henrich, V.E.: The surfaces of metal oxides. Rep. Prog. Phys. 48, 1481 (1985).CrossRefGoogle Scholar
11.Porter, D.A. and Eastering, K.E.: Phase Transformations in Metals and Alloys. 2nd ed. (CRC Press, Boca Raton, FL, 1992); pp. 276279.CrossRefGoogle Scholar
12.Ruddlesden, S.N. and Popper, P.: New compounds of the K2NiF4 type. Acta Crystallogr. 10, 538 (1957).CrossRefGoogle Scholar
13.Kubicek, M., Limbeck, A., Fromling, T., Hutter, H., and Fleig, J.: Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. J. Electrochem. Soc. 158, B727 (2011).CrossRefGoogle Scholar
14.Cai, Z., Kubicek, M., Fleig, J.R., and Yildiz, B.: Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films correlations to cathode surface activity and stability. Chem. Mater. 24, 1116 (2012).CrossRefGoogle Scholar
15.Rahmati, B., Fleig, J., Sigle, W., Bischoff, E., Maier, J., and Ruhle, M.: Oxidation of reduced polycrystalline Nb-doped SrTiO3: Characterization of surface islands. Surf. Sci. 595, 115 (2005).CrossRefGoogle Scholar
16.Meyer, R., Waser, R., Helmbold, J., and Borchardt, G.: Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions. J. Electroceram. 9, 103 (2002).CrossRefGoogle Scholar
17.Gomann, K., Borchardt, G., Gunhold, A., Maus-Friedrichs, W., and Baumann, H.: Ti diffusion in La-doped SrTiO3 single crystals. Phys. Chem. Chem. Phys. 6, 3639 (2004).CrossRefGoogle Scholar
18.Jung, W. and Tuller, H.L.: Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ. Sci. 5, 5370 (2012).CrossRefGoogle Scholar
19.Horvath, G., Gerblinger, J., Meixner, H., and Giber, J.: Segregation driving forces in perovskite titanates. Sens. Actuators, B 32, 93 (1996).CrossRefGoogle Scholar
20.Nowotny, J.: Interface defect chemistry of oxide ceramic materials - Unresolved problems. Solid State Ionics 49, 119 (1991).CrossRefGoogle Scholar
21.Gunhold, A., Gomann, K., Beuermann, L., Kempter, V., Borchardt, G., and Maus-Friedrichs, W.: Nanostructures on La-doped SrTiO3 surfaces. Anal. Bioanal.Chem. 375, 924 (2003).CrossRefGoogle ScholarPubMed
22.Szot, K. and Speier, W.: Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 60, 5909 (1999).CrossRefGoogle Scholar
23.Tai, L.W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R.: Structure and electrical-properties of La1-xSrxCo1-yFeyO3. 2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics 76, 273 (1995).CrossRefGoogle Scholar
24.Stevenson, J.W., Armstrong, T.R., Carneim, R.D., Pederson, L.R., and Weber, W.J.: Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M = Sr, Ba, Ca). J. Electrochem. Soc. 143, 2722 (1996).CrossRefGoogle Scholar
25.Wang, Y.L., Duncan, K., Wachsman, E.D., and Ebrahimi, F.: The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ionics 178, 53 (2007).CrossRefGoogle Scholar
26.Szot, K., Pawelczyk, M., Herion, J., Freiburg, C., Albers, J., Waser, R., Hulliger, J., Kwapulinski, J., and Dec, J.: Nature of the surface layer in ABO(3)-type Perovskites at elevated temperatures. Appl. Phys. A-Mater. Sci. Process. 62, 335 (1996).Google Scholar
27.Dufour, L.C., Bertrand, G.L., Caboche, G., Decorse, P., El Anssari, A., Poirson, A., and Vareille, M.: Fundamental and technological aspects of the surface properties and reactivity of some metal oxides. Solid State Ionics 101, 661 (1997).CrossRefGoogle Scholar
28.Konigstein, M. and Catlow, C.R.A.: Ab initio quantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides. J. Solid State Chem. 140, 103 (1998).CrossRefGoogle Scholar
29.Ishihara, T.: Perovskite Oxide for Solid Oxide Fuel Cells (Springer, New York, NY, 2009); pp. 2528.CrossRefGoogle Scholar
30.Copeland, W.D. and Swalin, R.A.: Studies on defect structure of strontium oxide. J. Phys. Chem. Solids 29, 313 (1968).CrossRefGoogle Scholar
31.De Souza, R.A. and Kilner, J.A.: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites. Part II. Oxygen surface exchange. Solid State Ionics 126, 153 (1999).CrossRefGoogle Scholar
32.Takeda, Y., Kanno, R., Noda, M., Tomida, Y., and Yamamoto, O.: Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J. Electrochem. Soc. 134, 2656 (1987).CrossRefGoogle Scholar
33.Kilner, J.A., DeSouza, R.A., and Fullarton, I.C.: Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics 8688, 703 (1996).CrossRefGoogle Scholar
34.Kan, C.C. and Wachsman, E.D.: Identifying drivers of catalytic activity through systematic surface modification of cathode materials. J. Electrochem. Soc. 156, B695 (2009).CrossRefGoogle Scholar
35.Mai, A., Becker, M., Assenmacher, W., Tietz, F., Hathiramani, D., Ivers-Tiffee, E., Stover, D., and Mader, W.: Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics 177, 1965 (2006).CrossRefGoogle Scholar
36.Fergus, J.W.: Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int. J. Hydrogen Energy 32, 3664 (2007).CrossRefGoogle Scholar