Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-20T12:20:47.630Z Has data issue: false hasContentIssue false

An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures

Published online by Cambridge University Press:  15 April 2013

Verena Maier*
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Benoit Merle
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Mathias Göken
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Karsten Durst
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
*
a)Address all correspondence to this author. e-mail: verena.maier@ww.uni-erlangen.de
Get access

Abstract

The strain-rate sensitivity of ultrafine-grained aluminum (Al) and nanocrystalline nickel (Ni) is studied with an improved nanoindentation creep method. Using the dynamic contact stiffness thermal drift influences can be minimized and reliable creep data can be obtained from nanoindentation creep experiments even at enhanced temperatures and up to 10 h. For face-centered cubic (fcc) metals it was found that the creep behavior is strongly influenced by the microstructure, as nanocrystalline (nc) as well as ultrafine-grained (ufg) samples show lower stress exponents when compared with their coarse-grained (cg) counterparts. The indentation creep behavior resembles a power-law behavior with stress exponents n being ∼ 20 at room temperature. For higher temperatures the stress exponents of ufg-Al and nc-Ni decrease down to n ∼ 5. These locally determined stress exponents are similar to the macroscopic exponents, indicating that similar deformation mechanisms are acting during indentation and macroscopic deformation. Grain boundary sliding found around the residual indentations is related to the motion of unconstrained surface grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Höppel, H.W., May, J., Eisenlohr, P., and Göken, M.: Strain-rate sensitivity of ultrafine-grained materials. Z. Metallkd. 96, 6 (2005).CrossRefGoogle Scholar
May, J., Höppel, H.W., and Göken, M.: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53, 189 (2005).CrossRefGoogle Scholar
Chinh, N.Q., Szommer, P., Horita, Z., and Langdon, T.G.: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 (2006).CrossRefGoogle Scholar
Li, Y.J., Mueller, J., Höppel, H.W., Göken, M., and Blum, W.: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).CrossRefGoogle Scholar
Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).CrossRefGoogle Scholar
Höppel, H.W., May, J., and Göken, M.: Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6, 781 (2004).CrossRefGoogle Scholar
Mayo, M.J. and Nix, W.D.: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Mater. 36, 2183 (1988).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).CrossRefGoogle Scholar
Vehoff, H., Lemaire, D., Schüler, K., Waschkies, T., and Yang, B.: The effect of grain size on strain rate sensitivity and activation volume - from nano to ufg nickel. Int. J. Mater. Res. 98, 259 (2007).CrossRefGoogle Scholar
Alkorta, J., Martinez-Esnaola, J.M., and Gil Sevillano, J.: Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium. Acta Mater. 56, 884 (2008).CrossRefGoogle Scholar
Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).CrossRefGoogle Scholar
Bower, A.F., Fleck, N.A., Needleman, A., and Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. London, Ser. A 441, 97 (1993).Google Scholar
Poisl, W.H., Oliver, W.C., and Fabes, B.D.: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024 (1995).CrossRefGoogle Scholar
Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metal. Mater. Trans. A 30, 601 (1999).CrossRefGoogle Scholar
Stone, D.S., Jackes, J.E., Puthoff, J., and Elmustafa, A.A.: Analysis of indentation creep. J. Mater. Res. 25, 611 (2010).CrossRefGoogle Scholar
Choi, I-C., Yoo, B-G., Kim, Y-J., and Jang, J-I.: Indentation creep revisited. J. Mater. Res. 27, 3 (2012).CrossRefGoogle Scholar
Goodall, R. and Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 (2006).CrossRefGoogle Scholar
Weihs, T.P. and Pethica, J.B.: Monitoring time-dependent deformation in small volumes, in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 325.Google Scholar
Pethica, J.B. and Oliver, W.C.: Tip surface interactions in STM and AFM. Phys. Scr. T. 19, 61 (1987).CrossRefGoogle Scholar
Syed Asif, S.A. and Pethica, J.B.: Nanoindentation of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
Goldsby, D.L., Rar, A., Pharr, G.M., and Tullis, T.E.: Nanoindentation creep of quartz, with implication for rate- and state-variable friction laws relevant to earthquake mechanics. J. Mater. Res. 19, 357 (2004).CrossRefGoogle Scholar
Beake, B.D. and Smith, J.F.: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 2179 (2002).CrossRefGoogle Scholar
Korte, S. and Clegg, W.J.: Micropillar compression of ceramics at elevated temperatures Scr. Mater. 60, 807 (2009).CrossRefGoogle Scholar
Wheeler, J.M., Raghavan, R., and Michler, J.: In-situ SEM indentation of Zr-based bulk maetallic glas at elevated temperatures. Mater. Sci. Eng., A 528, 8750 (2011).CrossRefGoogle Scholar
Schuh, C.A., Lund, A.L., and Nieh, T.G.: New regime of homogenous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
Duan, Z.C. and Hodge, A.M.: High-temperature nanoindentation: New developments and ongoing challenges. JOM 61, 32 (2009).CrossRefGoogle Scholar
Lucas, B.N. and Oliver, W.C.: Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe, in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 645.Google Scholar
Syed Asif, S.A. and Pethica, J.B.: Nano-scale indentation creep testing at non-ambient temperature. J. Adhes. 67, 153 (1997).CrossRefGoogle Scholar
Sawant, A. and Tin, S.: High temperature nanoindentation of Re-bearing single crystal Ni-base superalloy. Scr. Mater. 52, 275 (2008).CrossRefGoogle Scholar
Wang, C.L., Zhang, M., and Nieh, T.G.: Nanoindentation creep of nanocrystalline Nickel at elevated temperatures. J. Phys. D: Appl. Phys. 42, 115405 (2009).CrossRefGoogle Scholar
Natter, H. and Hempelmann, R.: Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51 (2003).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
Merle, B., Maier, V., Göken, M., and Durst, K.: Experimental determination of the effective indenter shape and ε-factor for nanoindentation by continuously measuring the unloading stiffness. J. Mater. Res. 27, 214 (2012).CrossRefGoogle Scholar
Mulhearn, T.O. and Tabor, D.: Creep and hardness of metals: A physical study. J. Inst. Met. 89, 7 (1960).Google Scholar
Cheng, Y-T. and Cheng, C-M.: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 (2001).CrossRefGoogle Scholar
Joslin, D.L. and Oliver, W.C.: A new method for analyzing data from continous depth-sensing microindentation tests. J. Mater. Res. 5, 123 (1990).CrossRefGoogle Scholar
Hay, J.L., Oliver, W.C., Bolshakov, A., and Pharr, G.M.: Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 101.Google Scholar
Atkins, A.G. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Sol. 13, 149 (1965).CrossRefGoogle Scholar
Su, C., LaManna, J.A., Gao, Y., Oliver, W.C., and Pharr, G.M.: Plastic instability in amorphous selenium near its glass transition temperature. J. Mater. Res. 25, 1015 (2010).CrossRefGoogle Scholar
Li, W.B., Henshall, J.L., Hooper, R.M., and Easterling, K.E.: The mechanics of indentation creep. Acta Metal. Mater. 39, 3099 (1991).CrossRefGoogle Scholar
Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties–A Handbook (MIT Press, Cambridge, MA, 1971).Google Scholar
Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).CrossRefGoogle Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
Sklenicka, V., Dvorak, J., and Svoboda, M.: Creep in ultrafine grained aluminium. Mater. Sci. Eng., A 387389, 696 (2004).CrossRefGoogle Scholar
Blum, W. and Li, Y.J.: Creep of ultrafine-grained Al and Cu produced by severe plastic deformation. Mater. Sci. Tech. 1, 65 (2005).Google Scholar
Blum, W. and Li, Y.J.: Flow stress and creep rate of nanocrystalline Ni. Scr. Mater. 57, 429 (2007).CrossRefGoogle Scholar
Meyers, M.A., Misha, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Kassner, M.E. and Pérez-Prado, M-T.: Five-power-law creep in single phase metals and alloys. Prog. Mater. Sci. 45, 1 (2000).CrossRefGoogle Scholar
Zhang, K., Weertman, J.R., and Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline ultrafine-grain copper. Appl. Phys. Lett. 85, 5197 (2004).CrossRefGoogle Scholar
Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W. Jr.: Direct observation of deformation-induced grain-growth during the nanoindentation of ultrafine-grained Al at room-temperature. Acta Mater. 52, 5381 (2004).CrossRefGoogle Scholar
Gianola, D.S., Van Petergem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrytsalline aluminum thin films. Acta Mater. 54, 2253 (2006).CrossRefGoogle Scholar
Pan, D., Nieh, T.G., and Chen, M.W.: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).CrossRefGoogle Scholar
Bolshakov, A. and Pharr, G.M.: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
Böhner, A., Maier, V., Durst, K., Höppel, H.W., and Göken, M.: Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).CrossRefGoogle Scholar
Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).CrossRefGoogle Scholar