Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T05:04:05.564Z Has data issue: false hasContentIssue false

Thermal stability of the nanostructure of mechanically milled Cu–5 vol% Al2O3 nanocomposite powder particles

Published online by Cambridge University Press:  01 May 2014

Dengshan Zhou
Affiliation:
Waikato Centre for Advanced Materials, School of Engineering, The University of Waikato, Hamilton, New Zealand
Deliang Zhang*
Affiliation:
State Key Laboratory for Metal Matrix Materials, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Charlie Kong
Affiliation:
Electron Microscope Unit, The University of New South Wales, Sydney, Australia
Paul Munroe
Affiliation:
Electron Microscope Unit, The University of New South Wales, Sydney, Australia
Rob Torrens
Affiliation:
Waikato Centre for Advanced Materials, School of Engineering, The University of Waikato, Hamilton, New Zealand
*
a)Address all correspondence to this author. e-mail: zhangdeliang@sjtu.edu.cn
Get access

Abstract

Isothermal annealing in the temperature range of 300–600 °C, microstructural characterization, and analysis of the grain growth kinetics during annealing were carried out for Cu–5 vol% Al2O3 nanocomposite powder particles produced by high energy mechanical milling. When the annealing temperature was 400 °C or lower, only reduction in dislocation density occurred during annealing. When the annealing temperature was 500 °C or higher, reduction in dislocation density, abnormal grain growth of the nanocrystalline Cu matrix, and coarsening of the Al2O3 nanoparticles occurred. It has been found that the microstructure of the nanocrystalline Cu matrix of the nanocomposite exhibits a far higher thermal stability than that of monolithic nanocrystalline Cu, even though the apparent activation energy of the grain growth of the former is similar to that of the latter over the temperature range of 400–600 °C, showing the dramatic drag effects of finely distributed Al2O3 nanoparticles and Al3+/O2− clusters on the grain boundary motion.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Han, B.Q., Ye, J., Newbery, A.P., Zhu, Y.T., Schoenung, J.M., and Lavernia, E.J.: In Bulk Nanostructured Materials, Zehetbauer, M.J. and Zhu, Y.T. ed.; Wiley-VCH Verlag: Weinheim, 2009; p. 273.Google Scholar
Zhang, D.L., Raynova, S., Koch, C.C, Scattergood, R.O., and Youssef, K.M.: Consolidation of a Cu-2.5 vol.% Al2O3 powder using high energy mechanical milling. Mater. Sci. Eng., A 410, 375 (2005).Google Scholar
Cheng, S., Ma, E., Wang, Y.M, Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P, and Han, K.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53(5), 1521 (2005).Google Scholar
He, L. and Ma, E.: Processing and microhardness of bulk Cu-Fe nanocomposites. Nanostruct. Mater. 7(3), 327 (1996).Google Scholar
Langlois, C., Hytch, M.J., Lartigue-Korinek, S., Champion, Y., and Langlois, P.: Synthesis and microstructure of bulk nanocrystalline copper. Metall. Mater. Trans. A 36(12), 3451 (2005).Google Scholar
Pozuelo, M., Melnyk, C., Kao, W.H., and Yang, J-M.: Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy. J. Mater. Res. 26(07), 904 (2011).CrossRefGoogle Scholar
Koch, C.C., Scattergood, R.O., Darling, K.A., and Semones, J.E.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43(23), 7264 (2008).Google Scholar
Weissmüller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3(1), 261 (1993).Google Scholar
VanLeeuwen, B.K., Darling, K.A., Koch, C.C., Scattergood, R.O., and Butler, B.G.: Thermal stability of nanocrystalline Pd81Zr19. Acta Mater. 58(12), 4292 (2010).Google Scholar
Krill, C.E., Ehrhardt, H., and Birringer, R.: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96(10), 1134 (2005).Google Scholar
Darling, K.A., VanLeeuwen, B.K., Koch, C.C., and Scattergood, R.O.: Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2010).Google Scholar
Atwater, M.A., Scattergood, R.O., and Koch, C.C.: The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng., A 559, 250 (2013).Google Scholar
Malow, T.R. and Koch, C.C.: Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 45(5), 2177 (1997).Google Scholar
Liu, K.W. and Mücklich, F.: Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater. 49(3), 395 (2001).Google Scholar
Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).Google Scholar
Zhang, X., Vo, N.Q., Bellon, P., and Averback, R.S.: Microstructural stability of nanostructured Cu–Nb–W alloys during high-temperature annealing and irradiation. Acta Mater. 59(13), 5332 (2011).CrossRefGoogle Scholar
Shaw, L., Luo, H., Villegas, J., and Miracle, D.: Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying. Acta Mater. 51(9), 2647 (2003).Google Scholar
Perez, R.J., Huang, B., and Lavernia, E.J.: Thermal stability of nanocrystalline Fe-10 wt.% Al produced by cryogenic mechanical alloying. Nanostruct. Mater. 7(5), 565 (1996).Google Scholar
Morris, D.G. and Morris, M.A.: Microstructure and strength of nanocrystalline copper alloy prepared by mechanical alloying. Acta Metall. 39(8), 1763 (1991).Google Scholar
Huang, B., Perez, R.J., and Lavernia, E.J.: Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A 255(1), 124 (1998).Google Scholar
Hashemi-Sadraei, L., Mousavi, S.E., Vogt, R., Li, Y., Zhang, Z., Lavernia, E.J., and Schoenung, J.M.: Influence of nitrogen content on thermal stability and grain growth kinetics of cryomilled Al nanocomposites. Metall. Mater. Trans. A 43(2), 747 (2012).Google Scholar
Botcharova, E., Freudenberger, J., and Schultz, L.: Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Mater. 54(12), 3333 (2006).Google Scholar
Langford, J.I. and Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102 (1978).Google Scholar
Holzwarth, U. and Gibson, N.: The Scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotech. 6(9), 534 (2011).CrossRefGoogle ScholarPubMed
Stokes, A.R. and Wilson, A.J.C.: The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc. 56(3), 174 (1944).Google Scholar
Williamson, G.K. and Smallman, R.E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34 (1956).Google Scholar
Zhao, Y.H., Lu, K., and Zhang, K.: Microstructure evolution and thermal properties in nanocrystalline Cu during mechanical attrition. Phys. Rev. B 66(8), 085404 (2002).Google Scholar
Ni, S., Wang, Y.B., Liao, X.Z., Alhajeri, S.N., Li, H.Q., Zhao, Y.H., Lavernia, E.J., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Mater. 64(4), 327 (2011).Google Scholar
Čížek, J., Procházka, I., Cieslar, M., Kužel, R., Matěj, Z., Cherkaska, V., Islamgaliev, R.K., and Kulyasova, O.: Influence of ceramic nanoparticles on grain growth in ultra fine grained copper prepared by high pressure torsion. Phys. Status Solidi C 4(10), 3587 (2007).Google Scholar
Ďurišin, J., Ďurišinová, K., Orolínová, M., and Saksl, K.: Effect of the MgO particles on the nanocrystalline copper grain stability. Mater. Lett. 58(29), 3796 (2004).Google Scholar
Burke, J.E.: Some factors affecting the rate of grain growth in metals. Trans. Metall. Soc. AIME 180, 73 (1949).Google Scholar
Atkinson, H.V.: Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 36(3), 469 (1988).Google Scholar
Zhou, F., Lee, J., and Lavernia, E.J.: Grain growth kinetics of a mechanically milled nanocrystalline Al. Scripta Mater. 44(8–9), 2013 (2001).CrossRefGoogle Scholar
Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., and Wu, D.T.: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47(7), 2143 (1999).Google Scholar
Lu, L., Tao, N.R., Wang, L.B., Ding, B.Z., and Lu, K.: Grain growth and strain release in nanocrystalline copper. J. Appl. Phys. 89(11), 6408 (2001).Google Scholar
Gottstein, G., Shvindlerman, L.S., and Zhao, B.: Thermodynamics and kinetics of grain boundary triple junctions in metals: Recent developments. Scripta Mater. 62(12), 914 (2010).Google Scholar
Shvindlerman, L.S. and Gottstein, G.: Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials. Z. Metallkd. 95(4), 239 (2004).Google Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier Science Ltd.: Oxford, UK, 2004; pp. 200244.Google Scholar
Simões, S., Calinas, R., Vieira, M.T., Vieira, M.F., and Ferreira, P.J.: In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechology 21(14), 145701 (2010).CrossRefGoogle ScholarPubMed
Horvath, J., Birringer, R., and Gleiter, H.: Diffusion in nanocrystalline material. Solid State Commun. 62(5), 319 (1987).Google Scholar
Ganapathi, S.K., Owen, D.M., and Chokshi, A.H.: The kinetics of grain growth in nanocrystalline copper. Scripta Metall. 25(12), 2699 (1991).CrossRefGoogle Scholar
Dickenscheid, W., Birringer, R., Gleiter, H., Kanert, O., Michel, B., and Günther, B.: Investigation of self-diffusion in nanocrystalline copper by NMR. Solid State Commun. 79(8), 683 (1991).Google Scholar
Cao, Z.H., Wang, F., Wang, L., and Meng, X.K.: Coupling effect of the electric and temperature fields on the growth of nanocrystalline copper films. Phys. Rev. B 81(11), 113405 (2010).Google Scholar
Mehrer, H.: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 1st ed.; Springer-Verlag: Berlin, 2007; pp. 304.Google Scholar
Smith, C.S.: Grains, phases, and interfaces: as interpretation of microstructure. Met. Technol. 15(4), 1 (1948).Google Scholar
Čížek, J., Procházka, I., Kužel, R., and Islamgaliev, R.: In Nanostructured Materials, Hofmann, H., Rahman, Z., and Schubert, U. eds.; Springer: Vienna, 2002; p. 137.Google Scholar