Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-01T01:04:58.475Z Has data issue: false hasContentIssue false

3 - A Hamiltonian Demography of Life History

from Part I - Theory of Senescence

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. & Ludwig, D. (1995). Optimality theory, Gompertz’ law, and the disposable soma theory of senescence. Evolution, 49, 1055–66.CrossRefGoogle ScholarPubMed
Ackerman, M., Schauerte, A., Stearns, S. C. & Jenal, U. (2007). Experimental evolution of ageing in a bacterium. BMC Evolutionary Biology, 7, 126.CrossRefGoogle Scholar
Baudisch, A. (2005). Hamilton’s indicators of the force of selection. Proceedings of the National Academy of Science of the United States of America, 102(23), 8263–8.Google ScholarPubMed
Baudisch, A. (2008). Inevitable Ageing? Contributions to Evolutionary-Demographic Theory (Berlin: Springer).Google Scholar
Bell, G. (1984). Evolutionary and non-evolutionary theories of senescence. American Naturalist, 124, 600–3.CrossRefGoogle Scholar
Carey, J. R., Liedo, P., Orozdo, D. & Vaupel, J. W. (1992). Slowing of mortality rates at older ages in large medfly cohorts. Science, 258, 447–61.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1970). Selection in populations with overlapping generations: I. The use of Malthusian parameters in population genetics. Theoretical Population Biology, 1, 352–70.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1980). Evolution in Age-Structured Populations (New York: Cambridge University Press).Google Scholar
Charlesworth, B. (2001). Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation-accumulation theory of ageing. Journal of Theoretical Biology, 210, 4765.CrossRefGoogle ScholarPubMed
Charlesworth, B. & Hughes, K. A. (1996). Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proceedings of the National Academy of Science of the United States of America, 93(12), 6140–5.Google Scholar
Chippindale, A. K., Alipaz, J. A., Chen, H.-W. & Rose, M. R. (1997). Experimental evolution of accelerated development in Drosophila: 1. Larval development speed and survival. Evolution, 51, 1536–51.CrossRefGoogle Scholar
Cochran, G. & Harpending, H. (2009). The 10,000 Year Explosion: How Civilization Accelerated Human Evolution (New York: Basic Books).Google Scholar
Comfort, A. (1979). The Biology of Senescence (Edinburgh: Churchill Livingstone).Google Scholar
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22(4), 173–4.CrossRefGoogle ScholarPubMed
Curtsinger, J. W., Fukui, H. H., Townsend, D. R. & Vaupel, J. W. (1992). Demography of genotypes: failure of limited life span. Science, 258, 461–3.CrossRefGoogle ScholarPubMed
David, R. H. & Bryant, E. H. (2000). The evolution of senescence under curtailed life span in laboratory populations of Musca domestica (the housefly). Heredity, 85, 115–21.Google Scholar
De Grey, A. & Rae, M. (2007). Ending Ageing: The Rejuvenation Breakthroughs that Could Reverse Human Ageing in Our Lifetime (New York: St Martin’s Press).Google Scholar
Finch, C. E. (1998). Variations in senescence and longevity include the possibility of negligible senescence. Journals of Gerontology: Medical Science, 53A(4), B235–9.Google Scholar
Finch, C. E. (2009). Update on slow ageing and negligible senescence: a mini-review. Gerontology, 55(3), 307–13.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (Oxford University Press).CrossRefGoogle Scholar
Forsberg, L. A., Rasi, C., Razzaghian, H. R., et al. (2012). Age-related somatic structural changes in the nuclear genome of human blood cells. American Journal of Human Genetics, 90, 217–28.CrossRefGoogle ScholarPubMed
Greenwood, M. & Irwin, J. O. (1939). The biostatistics of senility. Human Biology, 11, 123.Google Scholar
Haldane, J. B. S. (1927). A mathematical theory of natural and artificial selection, part IV. Proceedings of the Cambridge Philosophical Society, 23, 607–15.Google Scholar
Haldane, J. B. S. (1941). New Paths in Genetics (London: Allen & Unwin).Google Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hoffman, J. M., Creevy, K. E. & Promislow, D. E. L. (2013). Reproductive capability is associated with lifespan and cause of death in companion dogs. PLOS One, doi: 10.1371/journal.pone.0061082.CrossRefGoogle Scholar
Jazwinski, S. M. (1990). Ageing and senescence of the budding yeast Saccharomyces cerevisiae. Molecular Microbiology, 4(3), 337–43.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero‐Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. & Cremer, T. (1982). Cytogerontology since 1881: a reappraisal of August Weissmann and a review of modern progress. Human Genetics, 60, 101–21.CrossRefGoogle Scholar
Le Bourg, E. & Moreau, M. (2014). Individual late-life fecundity plateaus do exist in Drosophila melanogaster and are very common at old age. Experimental Gerontology, doi: 10.1016/j.exger.2014.04.001.CrossRefGoogle Scholar
Luckinbill, L. S., Arking, R., Clare, M., et al. (1984). Selection for delayed senescence in Drosophila melanogaster. Evolution, 38, 9961003.CrossRefGoogle ScholarPubMed
Martinez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33, 217–25.CrossRefGoogle ScholarPubMed
Moorad, J. A. & Promislow, D. E. L. (2010). Evolutionary demography and quantitative genetics: age-specific survival as a threshold trait. Proceedings of the Royal Society of London Series B: Biological Sciences, 278, 144–51.Google ScholarPubMed
Medawar, P. B. (1946). Old age and natural death. Modern Quarterly, 1, 3056.Google Scholar
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Mueller, L. D., Drapeau, M. D., Adams, C. S., et al. (2003). Statistical tests of demographic heterogeneity theories. Experimental Gerontology, 38, 373–86.CrossRefGoogle ScholarPubMed
Mueller, L. D., Rauser, C. L. & Rose, M. R. (2005). Population dynamics, life history and demography: lessons from Drosophila. In Advances in Ecological Research: Population Dynamics and Laboratory Ecology, Ed. Yiqi, L. (New York: Academic Press).Google Scholar
Mueller, L. D., Rauser, C. L. & Rose, M. R. (2007). An evolutionary heterogeneity model of late-life fecundity in Drosophila. Biogerontology, 8, 147–61.CrossRefGoogle ScholarPubMed
Mueller, L. D., Rauser, C. L. & Rose, M. R. (2011). Does Aging Stop? (New York: Oxford University Press).CrossRefGoogle Scholar
Mueller, L. D. & Rose, M. R. (1996). Evolutionary theory predicts late-life mortality plateaus. Proceedings of the National Academy of Sciences of the United States of America, 93, 15249–53.Google ScholarPubMed
Nagai, J., Lin, C. & Sabour, M. P. (1995). Lines of mice selected for reproductive longevity. Growth, Development, and Ageing, 59(3), 7991.Google ScholarPubMed
Nesse, R. M. (1988). Life table tests of evolutionary theories of senescence. Experimental Gerontology, 23, 445–53.CrossRefGoogle ScholarPubMed
Norton, H. T. J. (1928). Natural selection and Mendelian variation. Proceedings of the London Mathematical Society, 28, 145.CrossRefGoogle Scholar
Partridge, L. & Fowler, K. (1992). Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution, 46, 7691.CrossRefGoogle ScholarPubMed
Pearl, R., Miner, J. R. & Parker, S. L. (1927). Experimental studies on the duration of life: XI. Density of population and life duration in Drosophila. American Naturalist, 61, 289317.CrossRefGoogle Scholar
Polosak, J., Roszkowska-Gancarz, M., Kurylowicz, A., et al. (2010). Decreased expression and the Lys751Gln polymorphism of the XPD gene are associated with extreme longevity. Biogerontology, 11, 287–97.CrossRefGoogle ScholarPubMed
Phung, K. H, Rose, M. R. & Mueller, L. D. (In preparation). Transient age-specific adaptation to a novel environment.Google Scholar
Pletcher, S. D. & Curtsinger, J. W. (1998). Mortality plateaus and the evolution of senescence: why are old-age mortality rates so low? Evolution, 52, 454–64.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. (1991). Senescence in natural populations of mammals: a comparative study. Evolution, 45, 1869–87.CrossRefGoogle ScholarPubMed
Promislow, D. E. L, Tatar, M., Khazaeli, A. & Curtsinger, J. W. (1996). Age-specific patterns of genetic variance in Drosophila melanogaster: I. Mortality. Genetics, 143, 839–48.CrossRefGoogle ScholarPubMed
Pujol, B., Marrot, P. & Pannell, J. R. (2014). A quantitative genetic signature of senescence in a short-lived perennial plant. Current Biology, 24, 744–7.CrossRefGoogle Scholar
Rauser, C. L., Abdel-Aal, Y., Sheih, J. A., et al. (2005). Lifelong heterogeneity in fecundity is insufficient to explain late-life fecundity plateaus in Drosophila melanogaster. Experimental Gerontology, 40(8–9), 660–70.CrossRefGoogle ScholarPubMed
Rauser, C. L., Mueller, L. D. & Rose, M. R. (2003). Ageing, fertility and immortality. Experimental Gerontology, 38, 2733.CrossRefGoogle ScholarPubMed
Rauser, C. L., Mueller, L. D. & Rose, M. R. (2006). The evolution of late life. Ageing Research Reviews, 5, 1432.CrossRefGoogle ScholarPubMed
Rauser, C. L., Tierney, J. J., Gunion, S. M., et al. (2006). Evolution of late-life fecundity in Drosophila melanogaster. Journal of Evolutionary Biology, 19, 289301.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2008). The evolution of senescence from a comparative perspective. Functional Ecology, 22, 379–92.CrossRefGoogle Scholar
Rogina, B., Wolverton, T., Bross, T. G., et al. (2007). Distinct biological epochs in the reproductive life of female Drosophila melanogaster. Mechanisms of Aging and Development, 128, 477–85.CrossRefGoogle ScholarPubMed
Rose, M. R. (1982) Antagonistic pleiotropy, dominance, and genetic variation. Heredity, 48, 6378.CrossRefGoogle Scholar
Rose, M. R. (1983). Further models of selection with antagonistic pleiotropy. In Population Biology, ed. Freedman, H. I. and Strobeck, C. (pp. 4753)(Berlin: Springer).CrossRefGoogle Scholar
Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–10.CrossRefGoogle ScholarPubMed
Rose, M. R. (1985). Life-history evolution with antagonistic pleiotropy and overlapping generations. Theoretical Population Biology, 28, 342–58.CrossRefGoogle Scholar
Rose, M. R. (1991). Evolutionary Biology of Ageing (New York: Oxford University Press).Google Scholar
Rose, M. R. & Burke, M. K. (2011). Genomic Croesus: experimental evolutionary genetics of ageing. Experimental Gerontology, 46, 397403.CrossRefGoogle Scholar
Rose, M. R. & Charlesworth, B. (1980). A test of evolutionary theories of senescence. Nature, 287, 141–2.CrossRefGoogle ScholarPubMed
Rose, M. R. & Charlesworth, B. (1981). Genetics of life-history in Drosophila melanogaster: I. Sib analysis of adult females. Genetics, 97, 173–85.Google ScholarPubMed
Rose, M. R., Drapeau, M. D., Yazdi, P. G., et al. (2002). Evolution of late-life mortality in Drosophila melanogaster. Evolution, 56, 1982–91.Google ScholarPubMed
Rose, M. R., Passananti, H. B. & Matos, M. (eds.) (2004). Methuselah Flies: A Case Study in the Evolution of Ageing (Singapore: World Scientific Publishing).CrossRefGoogle Scholar
Santos, J., Pascual, M., Simões, P., et al. (2012). From nature to the lab: the impact of founder effects on adaptation. Journal of Evolutionary Biology, 25, 2607–22.CrossRefGoogle Scholar
Santos, J., Pascual, M., Simões, P., et al. (2013). Fast evolutionary genetic differentiation during experimental colonizations. Journal of Genetics, 92, 183–94.CrossRefGoogle ScholarPubMed
Service, P. M., Hutchinson, E. W. & Rose, M. R. (1988). Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution, 42, 708–16.CrossRefGoogle ScholarPubMed
Shahrestani, P., Tran, X. & Mueller, L. D. (2012a). Physiological decline prior to death in Drosophila melanogaster. Biogerontology, 13, 537–45.CrossRefGoogle ScholarPubMed
Shahrestani, P., Tran, X. & Mueller, L. D. (2012b). Patterns of male fitness conform to predictions of evolutionary models of late life. Journal of Evolutionary Biology, 25(6), 1060–5.CrossRefGoogle ScholarPubMed
Shaw, F. H., Promislow, D. E. L, Tata, R. M., et al. (1999). Toward reconciling inferences concerning genetic variation in senescence in Drosophila melanogaster. Genetics, 152, 553–66.CrossRefGoogle ScholarPubMed
Sokal, R. R. (1970). Senescence and genetic load: evidence from Tribolium. Science, 167, 1733–4.CrossRefGoogle ScholarPubMed
Steinsaltz, D. & Evans, S. N. (2004). Markov mortality models: implications of quasistationarity and varying initial conditions. Theoretical Population Biology, 65: 319–37.CrossRefGoogle Scholar
Steinsaltz, D., Evans, S. N. & Wachter, K. W. (2005). A generalized model of mutation-selection balance with applications to ageing. Advanced Applied Mathematics, 35, 1633.CrossRefGoogle Scholar
Tatar, M., Promislow, D. E. L, Khazaeli, A. & Curtsinger, J. W. (1996). Age specific patterns of genetic variance in Drosophila melanogaster: II. Fecundity and its genetic correlation with agespecific mortality. Genetics, 143, 849–58.CrossRefGoogle ScholarPubMed
Vaupel, J. W., Manton, K. G. & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–54.CrossRefGoogle ScholarPubMed
Wachter, K. W. (1999). Evolutionary demographic models for mortality plateaus. Proceedings National Academy of Sciences of the United States of America, 96, 10544–7.CrossRefGoogle ScholarPubMed
Wachter, K. W., Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences of the United States of America. 110(25), 10141–6.Google ScholarPubMed
Wattiaux, J. M. (1968a). Cumulative parental age effects in Drosophila subobscura. Evolution, 22, 406–21.CrossRefGoogle ScholarPubMed
Wattiaux, J. M. (1968b). Parental age effects in Drosophila pseudobscura. Experimental Gerontology, 3, 5561.CrossRefGoogle Scholar
Weismann, A. (1891). On Heredity (Oxford: Clarendon Press).Google Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Zajitschek, F., Jin, T., Colchero, F. & Maklakov, A. A. (2013) Ageing differently: diet- and sex-dependent late-life mortality patterns in Drosophila melanogaster. Journal of Gerontology, 69(6), 6674.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×