Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-31T09:20:30.875Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 July 2014

Rafael José Iorio, Jr
Affiliation:
IMPA, Rio de Janeiro
Valéria de Magalhães Iorio
Affiliation:
Fundacão Educacional Serra dos Orgãos, Rio de Janeiro
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L., Abdelouhab, J. L., Bona, M., Felland and J. C., Saut, Nonlocal models for nonlinear dispersive waves, Physica D 40 (1989) 360–392.Google Scholar
[2] R. A., Adams, Sobolev Spaces, Academic Press (1975).Google Scholar
[3] S., Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies, vol. 2 (1965).Google Scholar
[4] S., Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Sup. Pisa, CI. Sci. 2 (1975), 151-218.Google Scholar
[5] N. I., Akhiezer and I. M., Glazman, Theory of Linear Operators in Hilbert space, Dover Publ. (1993).Google Scholar
[6] J., Albert, Dispersion of low-energy waves for the generalized Benjamin–Bona–Mahony equation. J. Differ. Equations 63 (1986) 117–134.Google Scholar
[7] J., Albert, On the decay of solutions of the generalized Benjamin-Bona-Mahony equation. J. Math. Anal. Appl. 141 (2) (1989), 527–537.Google Scholar
[8] W. O., Amrein, J. M., Jauch and K. B., Sinha, Scattering Theory in Quantum Mechanics, W. A. Benjamin (1977).Google Scholar
[9] S. S., Antman, The equation for large vibrations of a string, Amer. Math. Monthly 87 (1980) 359–370.Google Scholar
[10] J. P., Antoine, F., Gesztesy and J., Shabani, Exactly solvable models of sphere interactions in quantum mechanics, J. Phys A: Math. Gen. 20 (1987) 3687–3712.Google Scholar
[11] T. M., Apostol, Calculus, vols 1 and 2, 2nd ed., Blaisdell (1969).Google Scholar
[12] J., Avrin, The generalized Benjamin–Bona–Mahony equation in ℝnwith singular initial data, Nonlin. Anal. Th. Meth. Appl. 11 (1987) 139–147.Google Scholar
[13] J., Avrin and J. A., Goldstein, Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions, Nonlin. Anal. Th. Meth. Appl. 9 (1985) 861–865.Google Scholar
[14] G., Bachman and L., Narici, Functional Analysis, Academic Press (1966).Google Scholar
[15] J. M., Ball, Remarks on blow-up and nonexistence theorems for nonlinear equations, Quart. J. Math. Oxford (2) 28 (1977) 473–486.Google Scholar
[16] J. M., Ball, Finite time blow-up in nonlinear problems, in Nonlinear Evolutions Equations, M. G. Crandall, ed., Academic Press (1978), 189–205.Google Scholar
[17] R. G., Bartle, The Elements of Integration, Wiley (1966).Google Scholar
[18] R., Beals, Advanced Mathematical Analysis, Graduate Texts in Math., Springer (1973).Google Scholar
[19] M., Ben-Artzi and A., Devinatz, The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (March 1987) no. 364.Google Scholar
[20] T. B., Benjamin, Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech. 29, (1967), 559–592.Google Scholar
[21] T. B., Benjamin, J. L., Bona, and J. J., Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London, Ser. A 272 (1972) 47–78.Google Scholar
[22] Ju. M., Berezanskii, Expansions in eigenfunctions of Selfadjoint operators, Translations of Mathematical Monographs, vol. 17, AMS (1968).Google Scholar
[23] M. S., Berger, Nonlinearity and Functional Analysis, Academic Press (1977).Google Scholar
[24] G., Rodriguez-Bianco, On the Cauchy problem for the Camassa-Holm equation, Preprint IMPA/CNPq (1999). To appear in Nonlinear Analysis: Theory, Methods and Applications.
[25] M., Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer (1998).Google Scholar
[26] J. L., Bona, R., Rajopadhye and M. E., Shonbek, Propagation of bores I: Two dimensional theory, Diff. Int. Eq. 1 (3-4) (1994) 699–734.Google Scholar
[27] J. L., Bona, S. V., Rajopadhye and M., Schonbek, Models for propagation of bores, I: Two-dimensional theory, Diff. Int. Eq. 7 (3-4) (1994) 699–734.Google Scholar
[28] J. L., Bona and M., Scialom, On the comparison of solutions of model equations for long waves. Mat. Contemp. 8 (1995) 21–37.Google Scholar
[29] J. L., Bona and R., Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976) 87–99.Google Scholar
[30] J. L., Bona and R., Smith, The initial value problem for the Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London, Ser. A 278 (1975) 555–604.Google Scholar
[31] J. L., Bona, H., Biagioni, R. J., Iorio Jr. and M., Scialom, On the Cauchy problem for the Korteweg–de Vries Kuramoto–Sivashinski equation, Adv. Diff. Eq. 1 (1996) 1–20.Google Scholar
[32] M. P, de Borba, The intermediate long wave equation in weighted Sobolev spaces, Mat. Contemp. 3 (1992) 9–20.Google Scholar
[33] J., Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations. I Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107–156.Google Scholar
[34] J., Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations. II The KdV equation, Geom. Funct. Anal 3 (1993) 209–262.Google Scholar
[35] J., Bourgain, On the Cauchy problem for the Kadomtsev–Petviashvili equation, Geom. Fund. Anal. 3 (1993) 315–341.Google Scholar
[36] J., Bourgain, On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl, Kahane Special Issue (1995) 17–86.Google Scholar
[37] W. E., Boyce and R. C., DiPrima, Elementary Differential Equations and Boundary Value Problems, 3rd ed., Wiley (1977).Google Scholar
[38] S., Brandt and H. D., Dahmen, The Picture Book of Quantum Mechanics, 2nd ed., Springer (1995).Google Scholar
[39] P. L., Butzer and R. J., Nessel, Fourier Analysis and Approximation, Volume I. One Dimensional Theory, Birkhäuser (1971).Google Scholar
[40] K. M., Case, Benjamin -Ono related equations and their solutions, Proc. Nat. Acad. Sci. U.S.A. 76 (1) (1979) 1–3.Google Scholar
[41] T., Cazenave, An Introduction to Nonlinear Schrödinger Equations, 3rd ed., Textos Matemáticos, vol. 26, Instituto de Matemática – UFRJ, Rio de Janeiro (1996).Google Scholar
[42] T., Cazenave, Blow-Up and Scattering in the Nonlinear Schrödinger Equation, 2nd ed., Textos Matemáticos, vol. 26, Instituto de Matemática – UFRJ, Rio de Janeiro (1996).Google Scholar
[43] P. R., Chernoff, Pointwise convergence of Fourier Series, Amer. Math. Monthly 87 (1980) 399–400.Google Scholar
[44] R. V., Churchill, Fourier Series and Boundary Value Problems, 2nd ed., McGraw-Hill (1963).Google Scholar
[45] E. A., Coddington and N., Levinson, Theory of Ordinary Differential Equations, McGraw-Hill (1955).Google Scholar
[46] A., Constantin, The Hamiltonian structure of the Camassa–Holm equation, Expos. Math. 15 (1997) 53–85.
[47] H. O., Cordes, Elliptic Pseudodifferential Operators: an Abstract Theory, Lecture Notes in Math., vol. 756, Springer (1979).Google Scholar
[48] R., Courant and D., Hilbert, Methods of Mathematical Physics, Interscience Publishers, 1962.Google Scholar
[49] H. L., Cycon, R. G., Froese, W., Kirsh and B., Simon, Schrödinger Operators, Springer (1987).Google Scholar
[50] K., Deimling, Nonlinear Functional Analysis, Springer (1985).Google Scholar
[51] J., Derezinski and C., Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Springer (1997).Google Scholar
[52] D., Dix, Temporal asymptotic behaviour of solutions of the Benjamin–Ono–Burgers equation, J. Differ. Equations 90 (2) (1991) 238–287.Google Scholar
[53] D., Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal. 27, (3) (1996) 708–724.Google Scholar
[54] G. F. D., Duff and D., Naylor, Differential Equations of Applied Mathematics, Wiley (1966).Google Scholar
[55] H., Dym and H. P., McKean, Fourier Series and Integrals, Academic Press (1972).Google Scholar
[56] R. E., Edwards, Fourier Series, a Modern Introduction, vols I and II, Holt, Rinehart and Winston (1967).Google Scholar
[57] B., Epstein, Partial Differential Equations: an Introduction, McGraw-Hill (1962).Google Scholar
[58] L. D., Faddeev and L. A., Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer (1987).Google Scholar
[59] C. L., Fefferman, The uncertainty principle, Bull. Am. Math. Soc. New Ser. 9 (1983) 129–206.Google Scholar
[60] G. B., Folland, Introduction to Partial Differential Equations, Mathematical Notes, Princeton University Press (1976).Google Scholar
[61] G. B., Folland and A., Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997) 207–238.Google Scholar
[62] H., Fujita, On the blowing-up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo, Sect. 1, 13 (1966) 109–124.Google Scholar
[63] W., Fulks, Advanced Calculus, Wiley (1964).Google Scholar
[64] P. R., Garabedian, Partial Differential Equations, Wiley (1964).Google Scholar
[65] I. M., Gel'Fand and G. E., Shilov, Generalized Functions, vol. 1, Academic Press (1964).Google Scholar
[66] I. M., Gel'Fand and G. E., Shilov, Generalized Functions, vol. 2, Academic Press (1968).Google Scholar
[67] I. M., Gel'Fand and G. E., Shilov, Generalized Functions, vol. 3, Academic Press (1967).Google Scholar
[68] I. M., Gel'Fand and N. Ya., Vilenkin, Generalized Functions, vol. 4, Academic Press (1964).Google Scholar
[69] D., Gilbarg and S., Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (1977).Google Scholar
[70] K., Gottfried, Quantum Mechanics, vol. 1: Fundamentals, W. A. Benjamin (1966).Google Scholar
[71] K. E., Gustafson, Introduction to Partial Differential Equations and Hilbert Space Methods, Wiley (1980).Google Scholar
[72] P., Hartman, Ordinary Differential Equations, 2nd ed., Birkhäuser (1982).Google Scholar
[73] D., Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer (1981).Google Scholar
[74] P., Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247, Longman Scientific & Technical, Longman House (1991).Google Scholar
[75] E., Hille, Methods in Classical and Functional Analysis, Addison-Wesley (1972).Google Scholar
[76] E., Hille and R. S., Phillips, Functional Analysis and Semigroups, revised ed., Amer. Math. Soc. Colloq. Pub., vol. 31 (1957).Google Scholar
[77] K., Hoffman and R., Kunze, Linear Algebra, 2nd ed., Prentice-Hall (1971).Google Scholar
[78] L., Hörmander, Linear Partial Differential Operators, Springer (1976).Google Scholar
[79] L., Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd ed. Grundlehren der Mathematischen Wissenschaften, 256. Springer-Verlag (1990).Google Scholar
[80] R. J., Iorio Jr., KdV, BO and friends in weighted Sobolev spaces, in Function-Analytic Methods for Partial Differential Equations, Lecture Notes in Mathematics, vol. 1450, Springer (1990) 105–121.Google Scholar
[81] R. J., Iorio Jr. and W. V. Leite, Nunes, On equations of KP type, Proceedings of the Royal Society of Edinburgh, 128A (1998), 725–743.Google Scholar
[82] R. J., Iorio Jr., F., Linares and M., Scialom, KdV, and BO equations with bore-like data, Differential and Integral Equations, 11 (1998) 895–915.Google Scholar
[83] J. D., Jackson, Classical Electrodynamics, Wiley (1962).Google Scholar
[84] A., Jensen, Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994) 599–651.Google Scholar
[85] A., Jensen and H., Kitada, Fundamental solutions and eigenfunction expansions for Schrödinger operators. II. Eigenfunction expansions., Math. Z. 199 (1988) 1–13.Google Scholar
[86] F, John, Partial Differential Equations. 4th ed., Applied Mathematical Sciences, vol. 1. Springer (1982).Google Scholar
[87] T., Kato, Wave operators and similarity for some non-self-adjoint operators, Math. Ann. 162 (1966) 258–269.Google Scholar
[88] T., Kato, Perturbation Theory for Linear Operators, 3rd ed., Springer (1995).Google Scholar
[89] T., Kato, Quasilinear Equations of Evolution with Applications to Partial Differential Equations, in Lecture Notes in Math. vol. 448, Springer (1975) 25–70.Google Scholar
[90] T., Kato, On the Korteweg–de Vries equation, Manuscripta Math. 28, (1979) 89–99.Google Scholar
[91] T., Kato, On the Cauchy Problem for the (generalized) Korteweg–de Vries Equation, Advances in Mathematics Supplementary Studies, vol. 8, M. G., Crandall, ed., Academic Press (1983) 93–128.Google Scholar
[92] T., Kato, Weak solutions of infinite-dimensional Hamiltonian systems, in Frontiers in Pure and Applied Mathematics, R., Dautray, ed., North-Holland, (1991) 133–149.Google Scholar
[93] T., Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique 46, (1987) 113–129.Google Scholar
[94] T., Kato, Abstract Evolution Equations, Linear and Quasilinear, Revisited, Lecture Notes in Math. 1540, Springer (1992) 103–125.Google Scholar
[95] T., Kato and S. T., Kuroda, The abstract theory of scattering, Rocky Mountain J. Math. 1, no. 1 (1970) 127–171.Google Scholar
[96] T., Kato and C. Y., Lai, Nonlinear equations and the Euler flow, J. Funct. Anal. 56 (1984) 15–28.Google Scholar
[97] O., Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. Henri Poincaré 4, no. 5 (1987) 432–452.Google Scholar
[98] Y., Katznelson, An introduction to Harmonic Analysis, Dover Publ. (1976).Google Scholar
[99] J., Kelley, General Topology, Van Nostrand-Reinhold (1955).Google Scholar
[100] C. E., Kenig, G., Ponce, and L., Vega, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993) 1–21.Google Scholar
[101] C. E., Kenig, G., Ponce, and L., Vega, Small solutions to nonlinear Schrödinger equations, Ann. I HP, Anal. Non Lin. 10 (1993) 255–288.Google Scholar
[102] C. E., Kenig, G., Ponce, and L., Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993) 527–620.Google Scholar
[103] C. E., Kenig, G., Ponce, and L., Vega, A bilinear form with application to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573–603.Google Scholar
[104] V., Khatskevich and D., Shoiyaket, Differentiable Operators and Nonlinear Equations, Birkhäuser (1994).Google Scholar
[105] A. N., Kolmogorov and S. V., Fomin, Introductory Real Analysis, Dover Publ. (1970). Translated from the 2nd Russian ed.Google Scholar
[106] D. L., Kreider, R. G., Kuller, D. R., Ostberg and F. W., Perkins, An Introduction to Linear Analysis, Addison-Wesley (1966).Google Scholar
[107] S., Kruzkhov and A., Faminskii, Generalized solutions of the Cauchy problem for the Korteweg–de Vries equation, Math. USSR Sbornik 48 (1984) 391–421.Google Scholar
[108] S., Lang, Real and Functional Analysis, 3rd ed., Graduate Texts in Math., Springer (1993).Google Scholar
[109] P. D., Lax, A Hamiltonian approach to KdV and other equations, in Nonlinear Evolution Equations, M. G., Crandall, ed., Academic Press (1985) 207–224.Google Scholar
[110] M. J., Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge Univ. Press (1964).Google Scholar
[111] I. G., Main, Vibrations and Waves in Physics, 2nd ed., Cambridge Univ. Press (1984).Google Scholar
[112] F. A., Mehmeti and S., Nicaise, Nemytskifs operator and global existence of small solutions of semilinear evolution equations on nonsmooth domains, Comm. Part. Diff. Eq. 22 (9 & 10) (1997) 1559–1588.Google Scholar
[113] E., Merzbacher, Quantum Mechanics, 2nd ed., Wiley (1970).Google Scholar
[114] S. G., Mikhlin, Mathematical Physics: an Advanced Course, North-Holland (1970).Google Scholar
[115] R. M., Miura, The Korteweg–de Vries equation: a survey of results, SIAM Rev. 18 (3) (1976) 412–459.Google Scholar
[116] A. C., Newell, Solitons in Mathematics and Physics, Regional Conference Series in Applied Mathematics, SIAM (1985).Google Scholar
[117] S., Novikov, S. V., Manakov, L. P., Pitaeviskii and V. E., Zakharov, Theory of Solitons - The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau, New York (1984).Google Scholar
[118] W. V. L., Nunes, Global well-posedness for the transitional Korteweg–de Vries equation, Appl. Math. Lett. 11 (1998) 15–20.Google Scholar
[119] T., Ogawa and Y., Tsutsumi, L2 solutions for the Initial Boundary Value Problem of the Korteweg–de Vries Equation with Periodic Boundary Conditions, Proceedings of the 6th symposium on nonlinear partial differential equations, Tokyo, Japan, April 4-6, 1989, K., Masuda et al (ed.), Tokyo: Kinokunya. Lect. Notes Num. Appl. Anal. 11 (1991) 187–202.Google Scholar
[120] H., Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082–1091.Google Scholar
[121] A., Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer (1983).Google Scholar
[122] I. G., Petrovski, Ordinary Differential Equations, Dover Publ. (1973).Google Scholar
[123] R. G., Pinsky, The behavior of the life span for solutions to ut = Δu + a (x) up, J. Diff. Eq. 147 (1998) 30–57.Google Scholar
[124] G., Ponce, On the global well-posedness of the Benjamin–Ono equation, Differ. Integral Equ. 4 (3) (1991) 527–542.Google Scholar
[125] G., Ponce, Notas Sobre el Problema de Valores Iniciales Associado a la Ecuación de Onda, III Escuela de Verano en Geometria Diferencial, Ecuaciones Diferenciales Parciales y Analysis Numérico, Univ. de los Andes, Santafé de Bogotá (1995).Google Scholar
[126] J. L., Powell and B., Crasemann, Quantum Mechanics, Addison-Wesley (1961).Google Scholar
[127] R. T., Prosser, A double scale of weighted L2 spaces, Bull. Amer. Math. Soc. 81, (3) (1975) 615–618.Google Scholar
[128] M. H., Protter and H. F., Weinberger, Maximum Principles in Differential Equations, Prentice Hall (1967).Google Scholar
[129] M. H., Protter and C. B., Morrey, A First Course in Real Analysis, Undergraduate Texts in Mathematics, Springer (1977).Google Scholar
[130] M. H., Protter, Review of the book Equations of Mixed Type, by M. M. Smirnov, Bull. Amer. Math. Soc. (New Ser.) 3 (1979) 534–538.Google Scholar
[131] S., Rajopadhye, Propagation of bores II: Three-dimensional theory, Nonlin. Anal. Th. Meth. Appl. 27 (8) (1996) 963–986.Google Scholar
[132] M., Reed and B., Simon, Methods of Modern Mathematical Physics, vol. I: Functional Analysis, Academic Press (1972).Google Scholar
[133] M., Reed and B., SimonMethods of Modern Mathematical Physics, vol. II: Fourier Analysis, Self-Adjointness, Academic Press (1975).Google Scholar
[134] M., Reed and B., Simon, Methods of Modern Mathematical Physics, vol. IV: Academic Press (1977).Google Scholar
[135] M., Reed and B., Simon, Methods of Modern Mathematical Physics, vol. III: Scattering Theory, Academic Press (1978).Google Scholar
[136] R. D., Richtmyer, Principles of Advanced Mathematical Physics, vol. I, Springer (1978).Google Scholar
[137] F., Riesz and B., Sz-Nagy, Functional Analysis, Frederick Ungar (1955). Translated from the 2nd French ed.Google Scholar
[138] E. E., Rosinger, Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland Mathematics Studies, vol. 146 (1987).Google Scholar
[139] H. L., Royden, Real Analysis, 2nd ed., Macmillan (1968).Google Scholar
[140] W., Rudin, Fourier Analysis on Groups, Wiley (1963).Google Scholar
[141] W., Rudin, Functional Analysis, McGraw-Hill (1973).Google Scholar
[142] W., Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill (1974).Google Scholar
[143] W., Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill-Kogakusha (1976).Google Scholar
[144] M., Schecter, Operator Methods in Quantum Mechanics, Elsevier-North-Holland (1981).Google Scholar
[145] L., Schwartz, Méthodes mathématiques pour les sciences physiques, 2nd éd., Hermann (1965).Google Scholar
[146] L., Schwartz, Théorie des distributions, Hermann (1973).Google Scholar
[147] R., Shankar, Principles of Quantum Mechanics, Plenum Press (1980).Google Scholar
[148] G. F., Simmons, Introduction to Topology and Modem Analysis, McGraw-Hill (1963).Google Scholar
[149] B., Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (New Ser.) 7 (1982) 447–526.Google Scholar
[150] M. M., Smirnov, Equations of Mixed Type, Translations of Mathematical Monographs, Amer. Math. Soc., vol. 51 (1978).Google Scholar
[151] S. L., Sobolev, Partial Differential Equations of Mathematical Physics, Addison-Wesley (1964). Translated from the 3rd Russian ed.Google Scholar
[152] Ph., Souplet, Blow-up in nonlocal reaction diffusion equations, SIAM J. Math. 29 (6) (1998) 1301–1334.Google Scholar
[153] I., Stakgold, Green's Functions and Boundary Value Problems, Wiley (1979).Google Scholar
[154] M., Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, Amer. Math. Soc. Colloq. Publ., vol. 15 (1932).Google Scholar
[155] J. A., Stratton, Eletromagnetic Theory, McGraw-Hill (1941).Google Scholar
[156] K. R., Symon, Mechanics, 2nd ed., Addison-Wesley (1960).Google Scholar
[157] R., Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer (1988).Google Scholar
[158] A., Torchinsky, Real Variable Methods in Harmonic Analysis, Academic Press (1986).Google Scholar
[159] M., Tsutsumi, Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive equations, J. Diff. Eq. 42 (1981) 260–281.Google Scholar
[160] K., Yosida, Functional Analysis, 2nd ed., Springer (1968).Google Scholar
[161] G. B., Whitham, Linear and Nonlinear Waves, Wiley (1974).Google Scholar
[162] D. V., Widder, The Heat Equation, Academic Press (1975).Google Scholar
[163] S., Willard, General Topology, Addison-Wesley (1970).Google Scholar
[164] E. C., Zachmanoglou and D., Thoe, Introduction to Partial Differential Equations with Applications, Williams and Wilkins (1976).Google Scholar
[165] J. D., Zuazo, Análisis de Fourier, Addison-Wesley/Univ. Autónoma de Madrid (1995).Google Scholar
[166] A., Zygmund, Intégrales singulières, Lecture Notes in Mathematics, vol. 204, Springer (1971).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×