Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-gtc7z Total loading time: 0.001 Render date: 2025-11-29T01:27:22.193Z Has data issue: false hasContentIssue false

Chapter 7 - Cell Biology: Creating Structure and Function

from Section III - Areas of Biological and Technical Advances Driving Neurosurgical Innovation

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Summary

The unique characteristics of the cells that allow them to communicate with each other, influence their life cycle, and function by themselves have opened a magic world of precise stem cell treatment. This chapter will review the history of neural transplantation from M.L. Apuzzo’s pioneering stereotactic implantation of adrenal medulla autografts for Parkinson’s disease treatment to S. Yamanaka’s groundbreaking development of induced pluripotent stem cells. Employing cells as a therapeutic option for repairing the nervous system remains challenging. It is marked by considerations of government policy regarding embyos and fetal tissue, continuous improvement in the cell sourcing and stem cell quality, diverse expert perspectives, and the consistent upgrading of the delivery methods by experienced neurosurgeons. The authors highlight the challenges and outcomes of clinical trials for neurodegenerative diseases, stroke, and spinal cord trauma, emphasizing the safety of stem cell therapy and the limited efficacy in some cases. This chapter is a comprehensive overview of the potential and challenges of stem cell transplantation for neurological disorders, highlighting the need for further research and policy application to realize its full potential.

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 121 - 167
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Maehle, AH. Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond. Dec 2011;65(4):359–78. doi:10.1098/rsnr.2011.0023CrossRefGoogle ScholarPubMed
Hansford, S, Huntsman, DG. Boveri at 100: Theodor Boveri and genetic predisposition to cancer. J Pathol. Oct 2014;234(2):142–5. doi:10.1002/path.4414CrossRefGoogle Scholar
Cooper, M. Regenerative pathologies: stem cells, teratomas and theories of cancer. Medicine Studies. 2009;1(1):5566.10.1007/s12376-008-0002-4CrossRefGoogle Scholar
Paksoy, N, Askanazy, M. (1865–1940). In: van Krieken, JHJM, ed. Encyclopedia of Pathology. Springer International Publishing; 2016:15.Google Scholar
Dallenbach-Hellweg, G, Schmidt, D. History of gynecological pathology. VI. Jacob Felix Marchand. Int J Gynecol Pathol. Jul 1999;18(3):281–7. doi:10.1097/00004347-199907000-00016CrossRefGoogle ScholarPubMed
Cooper, B. The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler. Proc (Bayl Univ Med Cent). Apr 2011;24(2):115–18. doi:10.1080/08998280.2011.11928697Google Scholar
Marino, M, Molinaro, M. Maximow, A A. (1874–1928). In: van Krieken, JHJM, ed. Encyclopedia of Pathology. Springer International Publishing; 2017:14.Google Scholar
Willier, BH. On the origin and differentiation of the sexual gland. The American Naturalist. 1933;67(711):298305.10.1086/280492CrossRefGoogle Scholar
Pappenheim, Wormer E., Artur, , hematologist (1870–1916). 2001:52–3.Google Scholar
Capp, JP. Cancer stem cells: from historical roots to a new perspective. J Oncol. 2019;2019:5189232. doi:10.1155/2019/5189232CrossRefGoogle ScholarPubMed
Thomas, ED, Lochte, HL, Jr., Lu, WC, Ferrebee, JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. Sep 1957;257(11):491–6. doi:10.1056/nejm195709122571102CrossRefGoogle ScholarPubMed
Mathe, G, Amiel, JL, Schwarzenberg, L, et al. Successful allogenic bone marrow transplantation in man: chimerism, induced specific tolerance and possible anti-leukemic effects. Blood. Feb 1965;25:179–96.10.1182/blood.V25.2.179.179CrossRefGoogle ScholarPubMed
Lown, RN, Philippe, J, Navarro, W, et al. Unrelated adult stem cell donor medical suitability: recommendations from the World Marrow Donor Association Clinical Working Group Committee. Bone Marrow Transplant. Jul 2014;49(7):880–6. doi:10.1038/bmt.2014.67CrossRefGoogle ScholarPubMed
De Robertis, EM. Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol. Apr 2006;7(4):296302. doi:10.1038/nrm1855CrossRefGoogle ScholarPubMed
Eriksson, PS, Perfilieva, E, Björk-Eriksson, T, et al. Neurogenesis in the adult human hippocampus. Nat Med. Nov 1998;4(11):1313–27. doi:10.1038/3305CrossRefGoogle ScholarPubMed
Mirzadeh, Z, Merkle, FT, Soriano-Navarro, M, Garcia-Verdugo, JM, Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. Sep 2008;3(3):265–78. doi:10.1016/j.stem.2008.07.004CrossRefGoogle Scholar
Temple, S, Alvarez-Buylla, A. Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol. Feb 1999;9(1):135–41. doi:10.1016/s0959-4388(99)80017-8CrossRefGoogle ScholarPubMed
Apuzzo, ML, Neal, JH, Waters, CH, et al. Utilization of unilateral and bilateral stereotactically placed adrenomedullary-striatal autografts in parkinsonian humans: rationale, techniques, and observations. Neurosurgery. May 1990;26(5):746–57. doi:10.1097/00006123-199005000-00003CrossRefGoogle ScholarPubMed
Waters, CH, Itabashi, HH, Apuzzo, MLJ, Weiner, LP. Adrenal to caudate transplantation – postmortem study. Movement Disorders. 1990;5(3):248–50. doi:https://doi.org/10.1002/mds.870050312CrossRefGoogle ScholarPubMed
Waters, CH, Apuzzo, ML, Neal, JH, Weiner, LP. Long-term follow-up of adrenal medullary transplantation for Parkinson’s disease. J Geriatr Psychiatry Neurol. Jan–Mar 1992;5(1):35–9. doi:10.1177/002383099200500106CrossRefGoogle ScholarPubMed
Lindvall, O, Rehncrona, S, Brundin, P, et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol. Jun 1989;46(6):615–31. doi:10.1001/archneur.1989.00520420033021CrossRefGoogle ScholarPubMed
Lindvall, O, Brundin, P, Widner, H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. Feb 1990;247(4942):574–7. doi:10.1126/science.2105529CrossRefGoogle ScholarPubMed
Geron receives, FDA clearance to begin world’s first human clinical trial of embryonic stem cell-based therapy. MENLO PARK, Calif: Geron Corporation. 2009.Google Scholar
Pera, MF. Human embryo research and the 14-day rule. Development. Jun 2017;144(11):1923–5. doi:10.1242/dev.151191CrossRefGoogle ScholarPubMed
Cavaliere, G. A 14-day limit for bioethics: the debate over human embryo research. BMC Med Ethics. May 2017;18(1):38. doi:10.1186/s12910-017-0198-5CrossRefGoogle ScholarPubMed
Hyun, I, Bredenoord, AL, Briscoe, J, Klipstein, S, Tan, T. Human embryo research beyond the primitive streak. Science. Mar 2021;371(6533):9981000. doi:10.1126/science.abf3751CrossRefGoogle ScholarPubMed
Ismaili M’hamdi, H, Rivron, NC, Asscher, EC. Going high and low: on pluralism and neutrality in human embryology policy-making. J Med Ethics. Dec 2022;doi:10.1136/jme-2022-108515CrossRefGoogle Scholar
Murugan, V. Embryonic stem cell research: a decade of debate from Bush to Obama. Yale J Biol Med. Sep 2009;82(3):101–3.Google ScholarPubMed
Omole, AE, Fakoya, AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. doi:10.7717/peerj.4370CrossRefGoogle ScholarPubMed
Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. Aug 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024CrossRefGoogle ScholarPubMed
Soldner, F, Hockemeyer, D, Beard, C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. Mar 2009;136(5):964–77. doi:10.1016/j.cell.2009.02.013CrossRefGoogle ScholarPubMed
Dimos, JT, Rodolfa, KT, Niakan, KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. Aug 2008;321(5893):1218–21. doi:10.1126/science.1158799CrossRefGoogle ScholarPubMed
Dang, C GT, Surbone, A, et al. Cell proliferation. Holland-Frei Cancer Medicine, 6th ed. 2003.Google Scholar
Varzideh, F, Gambardella, J, Kansakar, U, Jankauskas, SS, Santulli, G. Molecular mechanisms underlying pluripotency and self-renewal of embryonic stem cells. Int J Mol Sci. May 2023;24(9). doi:10.3390/ijms24098386CrossRefGoogle ScholarPubMed
Barbouti, A, Evangelou, K, Pateras, IS, et al. In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mech Ageing Dev. Jan 2019;177:8890. doi:10.1016/j.mad.2018.02.005CrossRefGoogle ScholarPubMed
Martínez-Cué, C, Rueda, N. Cellular senescence in neurodegenerative diseases. Front Cell Neurosci. 2020;14:16. doi:10.3389/fncel.2020.00016CrossRefGoogle ScholarPubMed
Isaković, J, Šerer, K, Barišić, B, Mitrečić, D. Mesenchymal stem cell therapy for neurological disorders: the light or the dark side of the force? Review. Front Bioeng Biotechnol. Feb 2023;11doi:10.3389/fbioe.2023.1139359CrossRefGoogle ScholarPubMed
Verma, M, Lizama, BN, Chu, CT. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Translational Neurodegeneration. 2022;11(1):3. doi:10.1186/s40035-021-00278-7CrossRefGoogle ScholarPubMed
Wilson, DM, III, Cookson, MR, Van Den Bosch, L, Zetterberg, H, Holtzman, DM, Dewachter, I. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693714. doi:10.1016/j.cell.2022.12.032CrossRefGoogle ScholarPubMed
Guo, F, Liu, X, Cai, H, Le, W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. Jan 2018;28(1):313. doi:10.1111/bpa.12545CrossRefGoogle ScholarPubMed
Chang, NC. Autophagy and stem cells: self-eating for self-renewal. review. Front Cell Develop Biol. March 2020;8. doi:10.3389/fcell.2020.00138CrossRefGoogle Scholar
García-Prat, L, Martínez-Vicente, M, Perdiguero, E, et al. Autophagy maintains stemness by preventing senescence. Nature. Jan 2016;529(7584):3742. doi:10.1038/nature16187CrossRefGoogle ScholarPubMed
Mousaei Ghasroldasht, M, Seok, J, Park, HS, Liakath Ali, FB, Al-Hendy, A. Stem cell therapy: from idea to clinical practice. Int J Mol Sci. Mar 2022;23(5). doi:10.3390/ijms23052850CrossRefGoogle ScholarPubMed
Lukovic, D, Moreno Manzano, V, Stojkovic, M, Bhattacharya, SS, Erceg, S. Concise review: human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells. Sep 2012;30(9):1787–92. doi:10.1002/stem.1159CrossRefGoogle ScholarPubMed
Digma, LA, Upadhyayula, PS, Martin, JR, Ciacci, JD. Chapter 31 – Stem cells and chronic spinal cord injury: Overview. In: Rajendram, R, Preedy, VR, Martin, CR, eds. Diagnosis and Treatment of Spinal Cord Injury. Academic Press; 2022:397409.10.1016/B978-0-12-822498-4.00031-2CrossRefGoogle Scholar
Lin, C-C, Lai, S-R, Shao, Y-H, Chen, C-L, Lee, K-Z. The therapeutic effectiveness of delayed fetal spinal cord tissue transplantation on respiratory function following mid-cervical spinal cord injury. Neurotherapeutics. 2017;14(3):792809. doi:10.1007/s13311-016-0509-4CrossRefGoogle ScholarPubMed
Pajer, K, Bellák, T, Nógrádi, A. Stem cell secretome for spinal cord repair: is it more than just a random baseline set of factors? Cells. Nov 2021;10(11). doi:10.3390/cells10113214CrossRefGoogle ScholarPubMed
Yang, D, Zhang, ZJ, Oldenburg, M, Ayala, M, Zhang, SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells. Jan 2008;26(1):5563. doi:10.1634/stemcells.2007-0494CrossRefGoogle ScholarPubMed
Collier, TJ, Sortwell, CE, Daley, BF. Diminished viability, growth, and behavioral efficacy of fetal dopamine neuron grafts in aging rats with long-term dopamine depletion: an argument for neurotrophic supplementation. J Neurosci. Jul 1999;19(13):5563–73. doi:10.1523/jneurosci.19-13-05563.1999CrossRefGoogle ScholarPubMed
Song, J-J, Oh, S-M, Kwon, O-C, et al. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson’s disease model. J Clin Invest. 2021;128(1). doi:10.1172/JCI93924Google Scholar
Zou, Y, Ma, D, Shen, H, et al. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomaterials Sci. 2020;8(18):51455156. doi:10.1039/D0BM00431FCrossRefGoogle ScholarPubMed
Lara-Rodarte, R, Cortés, D, Soriano, K, et al. Mouse embryonic stem cells expressing GDNF show enhanced dopaminergic differentiation and promote behavioral recovery after grafting in parkinsonian rats. Front Cell Dev Biol. 2021;9:661656. doi:10.3389/fcell.2021.661656CrossRefGoogle ScholarPubMed
Oh, B, Santhanam, S, Azadian, M, et al. Electrical modulation of transplanted stem cells improves functional recovery in a rodent model of stroke. Nature Commun. 2022;13(1):1366. doi:10.1038/s41467-022-29017-wCrossRefGoogle Scholar
Perlow, MJ, Freed, WJ, Hoffer, BJ, Seiger, A, Olson, L, Wyatt, RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. May 1979;204(4393):643–7. doi:10.1126/science.571147CrossRefGoogle ScholarPubMed
Freed, WJ, Perlow, MJ, Karoum, F, et al. Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann Neurol. Nov 1980;8(5):510–19. doi:10.1002/ana.410080508CrossRefGoogle Scholar
Brundin, P, Barker, RA, Parmar, M. Neural grafting in Parkinson’s disease. Problems and possibilities. Prog Brain Res. 2010;184:265–94. doi:10.1016/s0079-6123(10)84014-2CrossRefGoogle Scholar
Di Santo, S, Seiler, S, Ducray, AD, Meyer, M, Widmer, HR. A subpopulation of dopaminergic neurons coexpresses serotonin in ventral mesencephalic cultures but not after intrastriatal transplantation in a rat model of Parkinson’s disease. Cell Transplant. Apr 2017;26(4):679–91. doi:10.3727/096368916x693707CrossRefGoogle ScholarPubMed
Tronci, E, Fidalgo, C, Carta, M. Foetal cell transplantation for Parkinson’s disease: focus on graft-induced dyskinesia. Parkinsons Dis. 2015;2015:563820. doi:10.1155/2015/563820Google ScholarPubMed
Lane, EL, Winkler, C, Brundin, P, Cenci, MA. The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat. Neurobiol Dis. May 2006;22(2):334–45. doi:10.1016/j.nbd.2005.11.011CrossRefGoogle ScholarPubMed
Spits, C, Mateizel, I, Geens, M, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol. Dec 2008;26(12):1361–3. doi:10.1038/nbt.1510CrossRefGoogle ScholarPubMed
Martin, MJ, Muotri, A, Gage, F, Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. Feb 2005;11(2):228–32. doi:10.1038/nm1181CrossRefGoogle ScholarPubMed
Frausin, S, Viventi, S, Verga Falzacappa, L, et al. Wharton’s jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem. 2015;117(4–5):329–38.10.1016/j.acthis.2015.02.005CrossRefGoogle ScholarPubMed
Hass, R, Kasper, C, Böhm, S, Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. May 2011;9:12. doi:10.1186/1478-811x-9-12CrossRefGoogle ScholarPubMed
Pittenger, MF, Mackay, AM, Beck, SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. Apr 1999;284(5411):143–7. doi:10.1126/science.284.5411.143CrossRefGoogle ScholarPubMed
Hofstetter, CP, Schwarz, EJ, Hess, D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. Feb 2002;99(4):2199–204. doi:10.1073/pnas.042678299CrossRefGoogle ScholarPubMed
Salehi, H, Amirpour, N, Niapour, A, Razavi, S. An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev Rep. Feb 2016;12(1):2641. doi:10.1007/s12015-015-9631-7CrossRefGoogle ScholarPubMed
Bai, WF, Zhang, Y, Xu, W, et al. Isolation and characterization of neural progenitor cells from bone marrow in cell replacement therapy of brain injury. Front Cell Neurosci. 2020;14:49. doi:10.3389/fncel.2020.00049CrossRefGoogle ScholarPubMed
Sandner, B, Ciatipis, M, Motsch, M, Soljanik, I, Weidner, N, Blesch, A. Limited functional effects of subacute syngeneic bone marrow stromal cell transplantation after rat spinal cord contusion injury. Cell Transplant. 2016;25(1):125–39. doi:10.3727/096368915x687679CrossRefGoogle ScholarPubMed
Deng, YB, Liu, XG, Liu, ZG, Liu, XL, Liu, Y, Zhou, GQ. Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy. 2006;8(3):210–14. doi:10.1080/14653240600760808CrossRefGoogle ScholarPubMed
Goutman, SA, Savelieff, MG, Sakowski, SA, Feldman, EL. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs. Jun 2019;28(6):525–43. doi:10.1080/13543784.2019.1627324CrossRefGoogle ScholarPubMed
Nandoe Tewarie, RD, Hurtado, A, Ritfeld, GJ, et al. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. J Neurotrauma. Dec 2009;26(12):2313–22. doi:10.1089/neu.2009.0987Google Scholar
Dennis, JE, Charbord, P. Origin and differentiation of human and murine stroma. Stem Cells. 2002;20(3):205–14. doi:https://doi.org/10.1634/stemcells.20-3-205CrossRefGoogle ScholarPubMed
Isern, J, García-García, A, Martín, AM, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife. Sep 2014;3:e03696. doi:10.7554/eLife.03696CrossRefGoogle ScholarPubMed
Dezawa, M, Kanno, H, Hoshino, M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113(12):1701–10. doi:10.1172/JCI20935CrossRefGoogle ScholarPubMed
Boucherie, C, Schäfer, S, Lavand’homme, P, Maloteaux, JM, Hermans, E. Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res. Jul 2009;87(9):2034–46. doi:10.1002/jnr.22038CrossRefGoogle Scholar
Rivera-Cruz, CM, Shearer, JJ, Figueiredo Neto, M, Figueiredo, ML. The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int. 2017;2017:4015039. doi:10.1155/2017/4015039CrossRefGoogle ScholarPubMed
Bai, L, Lennon, DP, Eaton, V, et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. Aug 2009;57(11):1192–203. doi:10.1002/glia.20841CrossRefGoogle ScholarPubMed
Watanabe, S, Uchida, K, Nakajima, H, et al. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells. Jun 2015;33(6):1902–14. doi:10.1002/stem.2006CrossRefGoogle ScholarPubMed
Chen, J, Sanberg, PR, Li, Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. Nov 2001;32(11):2682–8. doi:10.1161/hs1101.098367CrossRefGoogle ScholarPubMed
Knippenberg, S, Thau, N, Schwabe, K, et al. Intraspinal injection of human umbilical cord blood-derived cells is neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. Neurodegen Dis. 2011;9(3):107120. doi:10.1159/000331327CrossRefGoogle Scholar
Gnanasegaran, N, Govindasamy, V, Simon, C, et al. Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur J Clin Invest. Jun 2017;47(6):403414. doi:10.1111/eci.12753CrossRefGoogle ScholarPubMed
Nosrat, IV, Smith, CA, Mullally, P, Olson, L, Nosrat, CA. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci. May 2004;19(9):2388–98. doi:10.1111/j.0953-816X.2004.03314.xCrossRefGoogle ScholarPubMed
Candelise, N, Santilli, F, Fabrizi, J, et al. The importance of stem cells isolated from human dental pulp and exfoliated deciduous teeth as therapeutic approach in nervous system pathologies. Cells. Jun 2023;12(13). doi:10.3390/cells12131686CrossRefGoogle ScholarPubMed
Nito, C, Sowa, K, Nakajima, M, et al. Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother. Dec 2018;108:1005–14. doi:10.1016/j.biopha.2018.09.084CrossRefGoogle ScholarPubMed
Ullah, I, Park, JM, Kang, YH, et al. Transplantation of human dental pulp-derived stem cells or differentiated neuronal cells from human dental pulp-derived stem cells identically enhances regeneration of the injured peripheral nerve. Stem Cells Dev. Sep 2017;26(17):12471257. doi:10.1089/scd.2017.0068CrossRefGoogle ScholarPubMed
Serra, M, Brito, C, Correia, C, Alves, PM. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. Jun 2012;30(6):350–9. doi:10.1016/j.tibtech.2012.03.003CrossRefGoogle ScholarPubMed
Guha, P, Morgan, JW, Mostoslavsky, G, Rodrigues, NP, Boyd, AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. Apr 2013;12(4):407–12. doi:10.1016/j.stem.2013.01.006CrossRefGoogle ScholarPubMed
Aron Badin, R, Bugi, A, Williams, S, et al. MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nature Comm. Sep 2019;10(1):4357. doi:10.1038/s41467-019-12324-0CrossRefGoogle ScholarPubMed
Hargus, G, Cooper, O, Deleidi, M, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA. Sep 2010;107(36):15921–6. doi:10.1073/pnas.1010209107CrossRefGoogle ScholarPubMed
Wang, S, Zou, C, Fu, L, et al. Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discovery. May 2015;1(1):15012. doi:10.1038/celldisc.2015.12CrossRefGoogle Scholar
Hiller, BM, Marmion, DJ, Thompson, CA, et al. Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson’s disease. NPJ Regenerative Medicine. April 2022;7(1):24. doi:10.1038/s41536-022-00221-yCrossRefGoogle ScholarPubMed
Pajer, K, Nemes, C, Berzsenyi, S, et al. Grafted murine induced pluripotent stem cells prevent death of injured rat motoneurons otherwise destined to die. Exp Neurol. Jul 2015;269:188201. doi:10.1016/j.expneurol.2015.03.031CrossRefGoogle ScholarPubMed
Khazaei, M, Ahuja, CS, Fehlings, MG. Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol. 2016;4:152. doi:10.3389/fcell.2016.00152Google ScholarPubMed
Kondo, T, Funayama, M, Tsukita, K, et al. Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Reports. Aug 2014;3(2):242–9. doi:10.1016/j.stemcr.2014.05.017CrossRefGoogle ScholarPubMed
Kawai, H, Yamashita, T, Ohta, Y, et al. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab. Aug 2010;30(8):1487–93. doi:10.1038/jcbfm.2010.32CrossRefGoogle ScholarPubMed
Wellmerling, K, Lehmann, C, Singh, A, Kirby, BJ. Microfluidic chip for label-free removal of teratoma-forming cells from therapeutic human stem cells. J Immunol Regen Med. Dec 2020;10:100030. doi: https://doi.org/10.1016/j.regen.2020.100030Google Scholar
Barker, RA, Parmar, M, Studer, L, Takahashi, J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell. Nov 2017;21(5):569–73. doi:10.1016/j.stem.2017.09.014CrossRefGoogle ScholarPubMed
Jensen, MB, Yan, H, Krishnaney-Davison, R, Al Sawaf, A, Zhang, SC. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis. May 2013;22(4):304–8. doi:10.1016/j.jstrokecerebrovasdis.2011.09.008CrossRefGoogle Scholar
Kikuchi, T, Morizane, A, Doi, D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. Aug 2017;548(7669):592–6. doi:10.1038/nature23664CrossRefGoogle Scholar
Stadtfeld, M, Apostolou, E, Akutsu, H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature. May 2010;465(7295):175–81. doi:10.1038/nature09017CrossRefGoogle ScholarPubMed
Edwards, MM, Wang, N, Massey, DJ, Egli, D, Koren, A. Incomplete reprogramming of DNA replication timing in induced pluripotent stem cells. bioRxiv. 2023:2023.06.12.544654. doi:10.1101/2023.06.12.544654CrossRefGoogle Scholar
Kim, K, Doi, A, Wen, B, et al. Epigenetic memory in induced pluripotent stem cells. Nature. Sep 2010;467(7313):285–90. doi:10.1038/nature09342CrossRefGoogle ScholarPubMed
Arez, M, Eckersley-Maslin, M, Klobučar, T, et al. Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation. Nat Commun. Sep 2022;13(1):5432. doi:10.1038/s41467-022-33013-5CrossRefGoogle ScholarPubMed
Magown, P, Brownstone, RM, Rafuse, VF. Tumor prevention facilitates delayed transplant of stem cell-derived motoneurons. Ann Clin Transl Neurol. Aug 2016;3(8):637–49. doi:10.1002/acn3.327CrossRefGoogle ScholarPubMed
Doi, D, Morizane, A, Kikuchi, T, et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells. May 2012;30(5):935–45. doi:10.1002/stem.1060CrossRefGoogle Scholar
Lee, MO, Moon, SH, Jeong, HC, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci USA. Aug 2013;110(35):E3281-90. doi:10.1073/pnas.1303669110CrossRefGoogle ScholarPubMed
Menendez, S, Camus, S, Herreria, A, et al. Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging Cell. Feb 2012;11(1):4150. doi:10.1111/j.1474-9726.2011.00754.xCrossRefGoogle ScholarPubMed
Oh, SH, Jeong, YW, Choi, W, et al. Multimodal therapeutic effects of neural precursor cells derived from human-induced pluripotent stem cells through episomal plasmid-based reprogramming in a rodent model of ischemic stroke. Stem Cells Int. 2020;2020:4061516. doi:10.1155/2020/4061516CrossRefGoogle Scholar
Dräger, NM, Sattler, SM, Huang, CT-L, et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nature Neurosci. Sep 2022;25(9):1149–62. doi:10.1038/s41593-022-01131-4CrossRefGoogle Scholar
Hardiman, O, Al-Chalabi, A, Chio, A, et al. Amyotrophic lateral sclerosis. Nature Rev Dis Primers. Oct 2017;3(1):17071. doi:10.1038/nrdp.2017.71CrossRefGoogle ScholarPubMed
Marin, B, Boumédiene, F, Logroscino, G, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2016;46(1):5774. doi:10.1093/ije/dyw061Google Scholar
Robberecht, W, Philips, T. The changing scene of amyotrophic lateral sclerosis. Nature Rev Neurosci. April 2013;14(4):248–64. doi:10.1038/nrn3430Google Scholar
Parobkova, E, Matej, R. Amyotrophic lateral sclerosis and frontotemporal lobar degenerations: similarities in genetic background. Diagnostics (Basel). Mar 2021;11(3). doi:10.3390/diagnostics11030509Google ScholarPubMed
Fischer, LR, Culver, DG, Tennant, P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. Feb 2004;185(2):232–40. doi:10.1016/j.expneurol.2003.10.004CrossRefGoogle ScholarPubMed
Laperle, AH, Moser, VA, Avalos, P, et al. Human iPSC-derived neural progenitor cells secreting GDNF provide protection in rodent models of ALS and retinal degeneration. Stem Cell Reports. 2023;18(8):1629–42. doi:10.1016/j.stemcr.2023.03.016CrossRefGoogle ScholarPubMed
Mazzini, L, Gelati, M, Profico, DC, et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med. Jan 2015;13:17. doi:10.1186/s12967-014-0371-2CrossRefGoogle ScholarPubMed
Feldman, EL, Boulis, NM, Hur, J, et al. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol. Mar 2014;75(3):363–73. doi:10.1002/ana.24113CrossRefGoogle Scholar
Glass, JD, Hertzberg, VS, Boulis, NM, et al. Transplantation of spinal cord-derived neural stem cells for ALS: analysis of phase 1 and 2 trials. Neurology. Jul 2016;87(4):392400. doi:10.1212/wnl.0000000000002889CrossRefGoogle Scholar
Mazzini, L, Gelati, M, Profico, DC, et al. Results from phase i clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: a long-term outcome. Stem Cells Transl Med. Sep 2019;8(9):887–97. doi:10.1002/sctm.18-0154CrossRefGoogle ScholarPubMed
Riley, J, Glass, J, Feldman, EL, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery. Jan 2014;74(1):7787. doi:10.1227/neu.0000000000000156CrossRefGoogle ScholarPubMed
Riley, J, Federici, T, Polak, M, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery. Aug 2012;71(2):405–16; discussion 416. doi:10.1227/NEU.0b013e31825ca05fCrossRefGoogle ScholarPubMed
Glass, JD, Boulis, NM, Johe, K, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells. Jun 2012;30(6):1144–51. doi:10.1002/stem.1079CrossRefGoogle ScholarPubMed
Riley, J, Butler, J, Baker, KB, et al. Targeted spinal cord therapeutics delivery: stabilized platform and microelectrode recording guidance validation. Stereotact Funct Neurosurg. 2008;86(2):6774. doi:10.1159/000112426CrossRefGoogle ScholarPubMed
Raore, B, Federici, T, Taub, J, et al. Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs. Spine (Phila Pa 1976). Feb 2011;36(3):E164-71. doi:10.1097/BRS.0b013e3181d77a47CrossRefGoogle ScholarPubMed
Henderson, CE, Phillips, HS, Pollock, RA, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. Nov 1994;266(5187):1062–4. doi:10.1126/science.7973664CrossRefGoogle ScholarPubMed
Sareen, D, Gowing, G, Sahabian, A, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. Aug 2014;522(12):2707–28. doi:10.1002/cne.23578CrossRefGoogle ScholarPubMed
Calvo, PM, Hernández, RG, de la Cruz, RR, Pastor, AM. Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons. Neural Regen Res. Aug 2023;18(8):1691–6. doi:10.4103/1673-5374.363194Google ScholarPubMed
Cudkowicz, ME, Lindborg, SR, Goyal, NA, et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve. Mar 2022;65(3):291302. doi:10.1002/mus.27472CrossRefGoogle ScholarPubMed
Petrou, P, Gothelf, Y, Argov, Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. Mar 2016;73(3):337–44. doi:10.1001/jamaneurol.2015.4321CrossRefGoogle ScholarPubMed
Berry, JD, Cudkowicz, ME, Windebank, AJ, et al. NurOwn, phase 2, randomized, clinical trial in patients with ALS: safety, clinical, and biomarker results. Neurology. Dec 2019;93(24):e2294-e2305. doi:10.1212/wnl.0000000000008620CrossRefGoogle Scholar
Behl, T, Kaur, G, Fratila, O, et al. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegen. Jan 2021;10(1):4. doi:10.1186/s40035-020-00226-xCrossRefGoogle ScholarPubMed
Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Move Disord. 2015;30(12):1591–601. doi:https://doi.org/10.1002/mds.26424CrossRefGoogle ScholarPubMed
Poewe, W, Seppi, K, Tanner, CM, et al. Parkinson disease. Nature Rev Dis Primers. Mar 2017;3(1):17013. doi:10.1038/nrdp.2017.13CrossRefGoogle ScholarPubMed
Freed, CR, Greene, PE, Breeze, RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. Mar 2001;344(10):710–19. doi:10.1056/nejm200103083441002CrossRefGoogle ScholarPubMed
Olanow, CW, Goetz, CG, Kordower, JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. Sep 2003;54(3):403–14. doi:10.1002/ana.10720CrossRefGoogle ScholarPubMed
Barker, RA. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat Med. Jul 2019;25(7):1045–53. doi:10.1038/s41591-019-0507-2CrossRefGoogle ScholarPubMed
Kordower, JH, Chu, Y, Hauser, RA, Freeman, TB, Olanow, CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. May 2008;14(5):504–6. doi:10.1038/nm1747CrossRefGoogle ScholarPubMed
Schweitzer, JS, Song, B, Herrington, TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med. May 2020;382(20):1926–32. doi:10.1056/NEJMoa1915872CrossRefGoogle ScholarPubMed
Parkinson’s iPSC trial. Nature Biotechnol. Sep 2023;41(9):1183. doi:10.1038/s41587-023-01965-8CrossRefGoogle Scholar
BlueRock’s neuronal stem cell therapy for Parkinson’s disease is first to show positive results in Phase I clinical study https://www.bluerocktx.com/bluerocks-neuronal-stem-cell-therapy-for-parkinsons-disease-is-first-to-show-positive-results-in-phase-i-clinical-study/Google Scholar
Benjamin, EJ, Blaha, MJ, Chiuve, SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. Mar 2017;135(10):e146603. doi:10.1161/cir.0000000000000485CrossRefGoogle ScholarPubMed
Dąbrowski, J, Czajka, A, Zielińska-Turek, J, et al. Brain functional reserve in the context of neuroplasticity after stroke. Neural Plast. 2019;2019:9708905. doi:10.1155/2019/9708905CrossRefGoogle ScholarPubMed
Hess, DC, Wechsler, LR, Clark, WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. May 2017;16(5):360–8. doi:10.1016/s1474-4422(17)30046-7CrossRefGoogle Scholar
Steinberg, GK, Kondziolka, D, Wechsler, LR, et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study. J Neurosurg. Nov 2018:111. doi:10.3171/2018.5.Jns173147CrossRefGoogle Scholar
Stroemer, P, Patel, S, Hope, A, Oliveira, C, Pollock, K, Sinden, J. The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair. Nov 2009;23(9):895909. doi:10.1177/1545968309335978CrossRefGoogle Scholar
Baron, JC. Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat Rev Neurol. Jun 2018;14(6):325–37. doi:10.1038/s41582-018-0002-2CrossRefGoogle Scholar
Ercelen, N, Karasu, N, Kahyaoglu, B, et al. Clinical experience: outcomes of mesenchymal stem cell transplantation in five stroke patients. Front Med (Lausanne). 2023;10:1051831. doi:10.3389/fmed.2023.1051831CrossRefGoogle ScholarPubMed
Berlet, R, Anthony, S, Brooks, B, et al. Combination of stem cells and rehabilitation therapies for ischemic stroke. Biomolecules. Sep 2021;11(9)doi:10.3390/biom11091316CrossRefGoogle ScholarPubMed
Molinares, DM, Gater, DR, Daniel, S, Pontee, NL. Nontraumatic spinal cord injury: epidemiology, etiology and management. J Pers Med. Nov 2022;12(11). doi:10.3390/jpm12111872CrossRefGoogle ScholarPubMed
Craig, A, Guest, R, Tran, Y, Middleton, J. Cognitive impairment and mood states after spinal cord injury. J Neurotrauma. Mar 2017;34(6):1156–63. doi:10.1089/neu.2016.4632CrossRefGoogle ScholarPubMed
Nakhjiri, E, Roqanian, S, Zangbar, HS, et al. Spinal cord injury causes prominent tau pathology associated with brain post-injury sequela. Mol Neurobiol. Jul 2022;59(7):4197–208. doi:10.1007/s12035-022-02843-1CrossRefGoogle ScholarPubMed
Xia, Y, Zhu, J, Yang, R, Wang, H, Li, Y, Fu, C. Mesenchymal stem cells in the treatment of spinal cord injury: mechanisms, current advances and future challenges. Review. Front Immunol. Feb 2023;14. doi:10.3389/fimmu.2023.1141601CrossRefGoogle Scholar
Scott, CT, Magnus, D. Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med. Dec 2014;3(12):1398–401. doi:10.5966/sctm.2014-0147CrossRefGoogle ScholarPubMed
Bretzner, F, Gilbert, F, Baylis, F, Brownstone, RM. Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cells. 2011;8(5):468–75.10.1016/j.stem.2011.04.012CrossRefGoogle ScholarPubMed
Kim, HS, Choi, SM, Yang, W, et al. PSA-NCAM(+) neural precursor cells from human embryonic stem cells promote neural tissue integrity and behavioral performance in a rat stroke model. Stem Cell Rev Rep. Dec 2014;10(6):761–71. doi:10.1007/s12015-014-9535-yCrossRefGoogle Scholar
Vaquero, J, Zurita, M, Rico, MA, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: safety and efficacy of the 100/3 guideline. Cytotherapy. Jun 2018;20(6):806–19. doi:10.1016/j.jcyt.2018.03.032CrossRefGoogle ScholarPubMed
Park, JH, Kim, DY, Sung, IY, et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery. May 2012;70(5):1238–47; discussion 1247. doi:10.1227/NEU.0b013e31824387f9CrossRefGoogle ScholarPubMed
Tran, AP, Warren, PM, Silver, J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res. Mar 2022;387(3):319–36. doi:10.1007/s00441-021-03477-wCrossRefGoogle ScholarPubMed
Clifford, T, Finkel, Z, Rodriguez, B, Joseph, A, Cai, L. Current advancements in spinal cord injury research-glial scar formation and neural regeneration. Cells. Mar 2023;12(6). doi:10.3390/cells12060853CrossRefGoogle ScholarPubMed
Blanquer, M, Moraleda, JM, Iniesta, F, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. Jun 2012;30(6):1277–85. doi:10.1002/stem.1080CrossRefGoogle ScholarPubMed
Nam, JY, Lee, TY, Kim, K, et al. Efficacy and safety of Lenzumestrocel (Neuronata-R® inj.) in patients with amyotrophic lateral sclerosis (ALSUMMIT study): study protocol for a multicentre, randomized, double-blind, parallel-group, sham procedure-controlled, phase III trial. Trials. May 2022;23(1):415. doi:10.1186/s13063-022-06327-4CrossRefGoogle ScholarPubMed
Oh, KW, Noh, MY, Kwon, MS, et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol. Sep 2018;84(3):361–73. doi:10.1002/ana.25302CrossRefGoogle ScholarPubMed
Nabavi, SM, Arab, L, Jarooghi, N, et al. Safety, feasibility of intravenous and intrathecal injection of autologous bone marrow derived mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: an open label phase i clinical trial. Cell J. Jan 2019;20(4):592–98. doi:10.22074/cellj.2019.5370Google ScholarPubMed
Gotkine, M, Caraco, Y, Lerner, Y, et al. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J Transl Med. Feb 2023;21(1):122. doi:10.1186/s12967-023-03903-3CrossRefGoogle ScholarPubMed
Petrou, P, Kassis, I, Yaghmour, NE, Ginzberg, A, Karussis, D. A phase II clinical trial with repeated intrathecal injections of autologous mesenchymal stem cells in patients with amyotrophic lateral sclerosis. Front Biosci (Landmark Ed). Oct 2021;26(10):693706. doi:10.52586/4980CrossRefGoogle ScholarPubMed
Baloh, RH, Johnson, JP, Avalos, P, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nature Med. Sep 2022;28(9):1813–22. doi:10.1038/s41591-022-01956-3CrossRefGoogle Scholar
Moniche, F, Gonzalez, A, Gonzalez-Marcos, JR, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. Aug 2012;43(8):2242–4. doi:10.1161/strokeaha.112.659409CrossRefGoogle ScholarPubMed
Jaillard, A, Hommel, M, Moisan, A, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Transl Stroke Res. Oct 2020;11(5):910–23. doi:10.1007/s12975-020-00787-zCrossRefGoogle ScholarPubMed
Kalladka, D, Sinden, J, Pollock, K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. Aug 20 2016;388(10046):787–96. doi:10.1016/s0140-6736(16)30513-xCrossRefGoogle Scholar
Levy, ML, Crawford, JR, Dib, N, Verkh, L, Tankovich, N, Cramer, SC. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke. Oct 2019;50(10):2835–41. doi:10.1161/strokeaha.119.026318CrossRefGoogle ScholarPubMed
Fang, J, Guo, Y, Tan, S, et al. Autologous endothelial progenitor cells transplantation for acute ischemic stroke: a 4-year follow-up study. Stem Cells Transl Med. 2018;8(1):1421. doi:10.1002/sctm.18-0012CrossRefGoogle ScholarPubMed
Prasad, K, Sharma, A, Garg, A, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. Dec 2014;45(12):3618–24. doi:10.1161/strokeaha.114.007028CrossRefGoogle ScholarPubMed
de Celis-Ruiz, E, Fuentes, B, de Leciñana M, Alonso, et al. Final Results of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells in Acute Ischemic Stroke (AMASCIS): A phase II, randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. Cell Transplant. 2022;31:9636897221083863. doi:10.1177/09636897221083863CrossRefGoogle ScholarPubMed
Muir, KW, Bulters, D, Willmot, M, et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). J Neurol Neurosurg Psychiatry. Apr 2020;91(4):396401. doi:10.1136/jnnp-2019-322515CrossRefGoogle ScholarPubMed
Baak, LM, Wagenaar, N, van der Aa, NE, et al. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurol. Jun 2022;21(6):528–36. doi:10.1016/s1474-4422(22)00117-xCrossRefGoogle ScholarPubMed
Gulati, A, Agrawal, N, Vibha, D, et al. Safety and efficacy of Sovateltide (IRL-1620) in a multicenter randomized controlled clinical trial in patients with acute cerebral ischemic stroke. CNS Drugs. Jan 2021;35(1):85104. doi:10.1007/s40263-020-00783-9CrossRefGoogle Scholar
Suda, S, Nito, C, Ihara, M, et al. Randomised placebo-controlled multicentre trial to evaluate the efficacy and safety of JTR-161, allogeneic human dental pulp stem cells, in patients with Acute Ischaemic stRoke (J-REPAIR). BMJ Open. May 2022;12(5):e054269. doi:10.1136/bmjopen-2021-054269CrossRefGoogle ScholarPubMed
El-Kheir, WA, Gabr, H, Awad, MR, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant. Apr 2014;23(6):729–45. doi:10.3727/096368913x664540CrossRefGoogle ScholarPubMed
Mendonça, MV, Larocca, TF, de Freitas Souza, BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. Nov 2014;5(6):126. doi:10.1186/scrt516CrossRefGoogle ScholarPubMed
Satti, HS, Waheed, A, Ahmed, P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: a phase I pilot study. Cytotherapy. Apr 2016;18(4):518–22. doi:10.1016/j.jcyt.2016.01.004CrossRefGoogle ScholarPubMed
Albu, S, Kumru, H, Coll, R, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. Feb 2021;23(2):146–56. doi:10.1016/j.jcyt.2020.08.008CrossRefGoogle ScholarPubMed
Terrigno, M, Bertacchi, M, Pandolfini, L, et al. The microRNA miR-21 is a mediator of FGF8 action on cortical COUP-TFI translation. Stem Cell Rep. Sep 2018;11(3):756–69. doi:10.1016/j.stemcr.2018.08.002CrossRefGoogle ScholarPubMed
Williams, CG, Lee, HJ, Asatsuma, T, Vento-Tormo, R, Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. June 2022;14(1):68. doi:10.1186/s13073-022-01075-1CrossRefGoogle ScholarPubMed
Chung, TL, Turner, JP, Thaker, NY, et al. Ascorbate promotes epigenetic activation of CD30 in human embryonic stem cells. Stem Cells. Oct 2010;28(10):1782–93. doi:10.1002/stem.500CrossRefGoogle ScholarPubMed
Kubelick, KP, Emelianov, SY. In vivo photoacoustic guidance of stem cell injection and delivery for regenerative spinal cord therapies. Neurophotonics. Jul 2020;7(3):030501. doi:10.1117/1.NPh.7.3.030501CrossRefGoogle ScholarPubMed
Lamanna, JJ, Urquia, LN, Hurtig, CV, et al. Magnetic resonance imaging-guided transplantation of neural stem cells into the porcine spinal cord. Stereotact Funct Neurosurg. 2017;95(1):60–8. doi:10.1159/000448765CrossRefGoogle ScholarPubMed
Petrus-Reurer, S, Romano, M, Howlett, S, Jones, JL, Lombardi, G, Saeb-Parsy, K. Immunological considerations and challenges for regenerative cellular therapies. Comm Biol. June 2021;4(1):798. doi:10.1038/s42003-021-02237-4CrossRefGoogle ScholarPubMed
Mehta, RI, Carpenter, JS, Mehta, RI, et al. Ultrasound-mediated blood–brain barrier opening uncovers an intracerebral perivenous fluid network in persons with Alzheimer’s disease. Fluids Barriers CNS. June 2023;20(1):46. doi:10.1186/s12987-023-00447-yCrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×