Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-10-31T23:31:31.516Z Has data issue: false hasContentIssue false

7 - Rings Beyond the Giant Planets

from II - Ring Systems by Location

Published online by Cambridge University Press:  26 February 2018

B. Sicardy
Affiliation:
Observatoire de Paris and University Pierre et Marie Curie Paris, FRANCE
M. El Moutamid
Affiliation:
Cornell University Ithaca, New York, USA
A. C. Quillen
Affiliation:
University of Rochester Rochester, New York, USA
P. M. Schenk
Affiliation:
Lunar and Planetary Institute Houston, Texas, USA
M. R. Showalter
Affiliation:
SETI Institute Mountain View, California, USA
K. Walsh
Affiliation:
Southwest Research Institute Boulder, Colorado, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access
Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 135 - 154
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansdell, M., Gaidos, E., Rappaport, S. A., et al. 2016. Young “dipper” stars in Upper Sco and Oph observed by K2. Astrophys. J., 816, 69.CrossRefGoogle Scholar
Araujo, R. A. N., Sfair, R., and Winter, O. C. 2016. The rings of Chariklo under close encounters with the giant planets. Astrophys. J., 824, 80.CrossRefGoogle Scholar
Assafin, M., Camargo, J. I. B., Vieira Martins, R., et al. 2010. Precise predictions of stellar occultations by Pluto, Charon, Nix, and Hydra for 2008-2015. Astron. Astrophys., 515, A32.CrossRefGoogle Scholar
Assafin, M., Camargo, J. I. B., Vieira Martins, R., et al. 2012. Candidate stellar occultations by large trans-Neptunian objects up to 2015. Astron. Astrophys., 541, A142.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Barucci, M. A., et al. 2010. Polarimetry of Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus, 210, 472-479.CrossRefGoogle Scholar
Bockelee-Morvan, D., Lellouch, E., Biver, N., et al. 2001. Search for CO gas in Pluto, centaurs and Kuiper Belt objects at radio wavelengths. Astron. Astrophys., 377, 343—353.CrossRefGoogle Scholar
Bodman, E. H. L., and Quillen, A. 2016. KIC 8462852: Transit of a large comet family. Astrophys. J. Letters, 819, L34.Google Scholar
Bodman, E. H. L., Quillen, A. C., Ansdell, M., et al. 2017. Dippers and dusty disks edges: New diagnostics and comparison to model predictions. Mon. Not. R. Aston. Soc, 470, 202-223.CrossRefGoogle Scholar
Boissel, Y., Sicardy, B., Roques, R., et al. 2014. An exploration of Pluto's environment through stellar occultations. Astron. Astrophys., 561, A144.CrossRefGoogle Scholar
Boyajian, T. S., LaCourse, D. M., Rappaport, S. A., et al. 2016. Planet Hunters IX. KIC 8462852 -where's the flux? Mon. Not. R. Astron. Soc, 457, 3988-4004.CrossRefGoogle Scholar
Braga-Ribas, P., Sicardy, B., Ortiz, J. L., et al. 2013. The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. Astrophys. J., 773, 26.CrossRefGoogle Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. 2014. A ring system detected around the Centaur (10199) Chariklo. Nature, 508, 72-75.CrossRefGoogle Scholar
Burns, J. A., Showalter, M. R., Hamilton, D. P., et al. 1999. The formation of Jupiter's faint rings. Science, 284, 1146.CrossRefGoogle ScholarPubMed
Bus, S. J., Buie, M. W., Schleicher, D. G., et al. 1996. SteUar occulta-tion by 2060 Chiron. Icarus, 123, 478-490.CrossRefGoogle Scholar
Camargo, J. I. B., Vieira-Martins, R., Assafin, M., et al. 2014. Candidate stellar occultations by Centaurs and trans-Neptunian objects up to 2014. Astron. Astrophys., 561, A37.CrossRefGoogle Scholar
Castillo-Rogez, J. C., Matson, D. L., Sotin, C., et al. 2007. Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 190, 179-202.CrossRefGoogle Scholar
Chadima, P., Harmanec, P., Bennett, P. D., et al. 2011. Spectral and photometric analysis of the eclipsing binary e Aurigae prior to and during the 2009-2011 eclipse. Astron. Astrophys., 530, A146.CrossRefGoogle Scholar
Chiang, E. I., and Goldreich, P. 2000. Apse alignment of narrow eccentric planetary rings. Astrophys. J., 540, 1084—1090.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The structure of Saturn's rings. In: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M., eds., Saturn from Cassini-Huygens. Springer. Pages 375-412.Google Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. 2009. Ring particle composition and size distribution. In: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M., eds., Saturn from Cassini-Huygens. Springer. Pages 459-509.Google Scholar
Delsemme, A. H. 1982. Chemical composition of cometary nuclei. Pages 85-130 of: Wilkening, L. L. (ed.), IAU Colloq. 61: Comet Discoveries, Statistics, and Observational Selection.
Denk, X., Matz, K. -D., Roatsch, X, et al. 2000. Iapetus (1): Size, topography, surface structures, craters. Page 1596 of: Lunar and Planetary Science Conference. Lunar and Planetary Inst. Xechnical Report, vol. 31.Google Scholar
Denk, X., Neukum, G., Roatsch, X., et al. 2005a. First imaging results from the Iapetus B/C flyby of the Cassini spacecraft. In: Mackwell, S., and Stansbery, E. (eds.), 36th Annual Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 36.Google Scholar
Denk, X., Neukum, G., Helfenstein, P., et al. 2005b. Xhe first six months of Iapetus observations by the cassini ISS Camera. In: Mackwell, S., and Stansbery, E. (eds.), 36th Annual Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 36.Google Scholar
Desmars, J. 2015. Detection of Yarkovsky acceleration in the context of precovery observations and the future Gaia catalogue. Astron. Astrophys., 575, A53.CrossRefGoogle Scholar
Desmars, J., Camargo, J. I. B., Braga-Ribas, E., et al. 2015. Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations. Astron. Astrophys., 584, A96.CrossRefGoogle Scholar
Dombard, A. J., Cheng, A. E., McKinnon, W. B., and Kay, J. P. 2012. Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact. Journal of Geophysical Research (Planets), 117, 3002.Google Scholar
Dong, S., Katz, B., Prieto, J. L., et al. 2014. OGLE-LMC-ECL-11893: Xhe discovery of a long-period eclipsing binary with a circumstellar disk. Astrophys. J., 788, 41.CrossRefGoogle Scholar
Duffard, R., Pinilla-Alonso, N., Ortiz, J. L., et al. 2014a. Photometric and spectroscopic evidence for a dense ring system around Centaur Chariklo. Astron. Astrophys., 568, A79.CrossRefGoogle Scholar
Duffard, R., Pinilla-Alonso, N., Santos-Sanz, P., et al. 2014b. “XNOs are Cool”: A survey of the trans-Neptunian region. XL A Herschel-PACS view of 16 Centaurs. Astron. Astrophys., 564, A92.Google Scholar
Duxbury, X. C., and Ocampo, A. C. 1988. Mars: Satellite and ring search from Viking. Icarus, 76, 160—162.CrossRefGoogle Scholar
Elliot, J. L., French, R. G., Meech, K. J., and Elias, J. H. 1984. Structure of the Uranian rings. I -Square-well model and particle-size constraints. Astron. J., 89, 1587-1603.CrossRefGoogle Scholar
Elliot, J. L., Olkin, C. B., Dunham, E. W., et al. 1995. Jet-like features near the nucleus of Chiron. Nature, 373, 46—49.CrossRefGoogle Scholar
Elliot, J. L., Person, M. J., Zuluaga, C. A., et al. 2010. Size and albedo of Kuiper belt object 55636 from a stellar occultation. Nature, 465, 897-900.CrossRefGoogle ScholarPubMed
Fornasier, S., Lellouch, E., Miiller, X., et al. 2013. XNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70-500/xm. Astron. Astrophys., 555, A15.CrossRefGoogle Scholar
Fornasier, S., Lazzaro, D., Alvarez-Candal, A., et al. 2014. Xhe Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity. Astron. Astrophys., 568, Lll.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. 1991. Dynamics and structure of the Uranian rings. In: Bergstrahl, J. X., Miner, E. D., and Matthews, M. S., eds., Uranus. University of Arizona Press. Pages 327-409.Google Scholar
Galan, C., Mikolajewski, M., Xomov, X., et al. 2012. International observational campaigns of the last two eclipses in EE Cephei: 2003 and 2008/9. Astron. Astrophys., 544, A53.CrossRefGoogle Scholar
Gansicke, B. X., Aungwerojwit, A., Marsh, X. R., et al. 2016. High-speed photometry of the disintegrating planetesimals at WD1145+017: Evidence for rapid dynamical evolution. Astrophys. J. Letters, 818, L7.Google Scholar
Giese, B., Denk, X., Neukum, G., et al. 2008. Xhe topography of Iapetus' leading side. Icarus, 193, 359-371.CrossRefGoogle Scholar
Gladman, B., Marsden, B. G., and Vanlaerhoven, C. 2008. Nomenclature in the Outer Solar System. In: Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. University of Arizona Press. Pages 43-57.Google Scholar
Goldreich, P., and Porco, C. C. 1987. Shepherding of the Uranian rings. II. Dynamics. Astron. J., 93, 730.CrossRefGoogle Scholar
Goldreich, P., and Xremaine, S. 1979a. Precession of the epsilon ring of Uranus. Astron. J., 84, 1638-1641.CrossRefGoogle Scholar
Goldreich, P., and Xremaine, S. 1979b. Xowards a theory for the Uranian rings. Nature, 211, 97-99.Google Scholar
Goldreich, P., and Xremaine, S. 1982. Xhe dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20, 249-283.CrossRefGoogle Scholar
Guilbert, A., Barucci, M. A., Brunetto, R., et al. 2009. A portrait of Centaur 10199 Chariklo. Astron. Astrophys., 501, 777-784.CrossRefGoogle Scholar
Guilbert-Lepoutre, A. 2011. A thermal evolution model of Centaur 10199 Chariklo. Astron. J., 141, 103.CrossRefGoogle Scholar
Hamilton, D. P. 1996. Xhe asymmetric time-variable rings of Mars. Icarus, 119, 153-172.CrossRefGoogle Scholar
Hedman, M. M. 2015. Why are dense planetary rings only found between 8 AU and 20 AU? Astrophys. J. Letters, 801, L33.Google Scholar
Hedman, M. M., Nicholson, P. D., Cuzzi, J. N., et al. 2013. Connections between spectra and structure in Saturn's main rings based on Cassini VIMS data. Icarus, 223, 105-130.CrossRefGoogle Scholar
Homer, J., Evans, N. W., and Bailey, M. E. 2004. Simulations of the population of Centaurs —I. Xhe bulk statistics. Mon. Not. R. Astron. Soc, 354, 798-810.Google Scholar
Hyodo, R., Charnoz, S., Genda, H., and Ohtsuki, K. 2016. Formation of Centaurs's rings through their partial tidal disruption during planetary encounters. Astrophys. J. Letters, 828, L8.Google Scholar
Ip, W. -H. 2006. On a ring origin of the equatorial ridge of Iapetus. Geophys. Res. Letters, 33, 16203.CrossRefGoogle Scholar
Ishimoto, H. 1996. Formation of Phobos/Deimos dust rings. Icarus, 122, 153-165.CrossRefGoogle Scholar
Jones, G. H., Roussos, E., Krupp, N., et al. 2008. Xhe dust halo of Saturn's largest icy moon, Rhea. Science, 319, 1380.CrossRefGoogle Scholar
Juhasz, A., and Horanyi, M. 1995. Dust torus around Mars. Geophys. Res., 100, 3277-3284.CrossRefGoogle Scholar
Karkoschka, E. 2001. Comprehensive photometry of the rings and 16 satellites of Uranus with the Hubble Space Xelescope. Icarus, 151, 51-68.CrossRefGoogle Scholar
Kenworthy, M. A., and Mamajek, E. E. 2015. Modeling giant extraso-lar ring systems in eclipse and the case of J1407b: Sculpting by exomoons? Astrophys. J., 800, 126.CrossRefGoogle Scholar
Kenworthy, M. A., Lacour, S., Kraus, A., et al. 2015. Mass and period limits on the ringed companion transiting the young star J1407. Mon. Not. R. Astron. Soc, 446, 411-427.CrossRefGoogle Scholar
Krivov, A. V., and Hamilton, D. P. 1997. Martian dust belts: Waiting for discovery. Icarus, 128, 335-353.CrossRefGoogle Scholar
Krivov, A. V., andXitov, V. B. 1995. On the Dust Xorus around the orbit of Phobos. Journal of Astrophysics and Astronomy Supplement, 16, 394.Google Scholar
Levison, H. F., Walsh, K. J., Barr, A. C., and Dones, L. 2011. Ridge formation and de-spinning of Iapetus via an impact-generated satellite. Icarus, 214, 773-778.CrossRefGoogle Scholar
Luu, J. X., and Jewitt, D. C. 1990. Cometary activity in 2060 Chiron. Astron. J., 100, 913-932.CrossRefGoogle Scholar
Mamajek, E. E., Quillen, A. C., Pecaut, M. J., et al. 2012. Planetary construction zones in occultation: Discovery of an extrasolar ring system transiting a young sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astron. J., 143, 72.CrossRefGoogle Scholar
Meech, K., and Belton, M. 1989. (2060) Chiron. IAUCirc, Feb., 4770.
Meng, Z., Quillen, A. C., BeU, C. P. M., et al. 2014. A search for eclipsing binaries that host discs. Mon. Not. R. Astron. Soc, 441, 3733-3741.CrossRefGoogle Scholar
Mosqueira, I., and Estrada, P. R. 2002. Apse alignment of the Uranian rings. Icarus, 158, 545-556.CrossRefGoogle Scholar
Murray, C. D., and Dermott, S. F. 1999. Solar System Dynamics. Cambridge University Press.Google Scholar
Oieroset, M., Brain, D. A., Simpson, E., et al. 2010. Search for Phobos and Deimos gas/dust tori using in situ observations from Mars Global Surveyor MAG/ER. Icarus, 206, 189-198.CrossRefGoogle Scholar
Ortiz, J. L., Sicardy, B., Braga-Ribas, E., et al. 2012. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature, 491, 566-569.CrossRefGoogle ScholarPubMed
Ortiz, J. L., Duffard, R., PiniUa-Alonso, N., et al. 2015. Possible ring material around centaur (2060) Chiron. Astron. Astroph., 576, A18.CrossRefGoogle Scholar
Pan, M., and Wu, Y. 2016. On the mass and origin of Chariklo's rings. Astrophys. J., 821, 18.CrossRefGoogle Scholar
Peale, S. J. 1977. Rotation histories of the natural satellites. Pages 87-111 of: Burns, J. A. (ed.), IAU Colloq. 28: Planetary Satellites.
Petrov, P. P., Gahm, G. E., Djupvik, A. A., et al. 2015. Another deep dimming of the classical T Tauri star RW Aurigae A. Astron. Astrophys., 577, A73.CrossRefGoogle Scholar
Pires dos Santos, P. M., Giuliatti Winter, S. M., Sfair, R., and Mourao, D. C. 2013. Small particles in Pluto's environment: Effects of the solar radiation pressure. Mon. Not. Roy. Astron. Soc, 430, 2761—2767.CrossRefGoogle Scholar
Poppe, A. R., and Horanyi, M. 2011. The effect of Nix and Hydra on the putative Pluto-Charon dust cloud. Page 1201 of: Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 42.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini imaging science: Initial results on Phoebe and Iapetus. Science, 307, 1237-1242.Google ScholarPubMed
Porco, C. C., Thomas, P. C., Weiss, J. W., and Richardson, D. C. 2007. Saturn's small inner satellites: Clues to their origins. Science, 318, 1602.CrossRefGoogle ScholarPubMed
Porter, S. B., and Stern, S. A. 2015. Orbits of potential pluto satellites and rings between Charon and Hydra. arXiv: 1505. 05933, May.
Quillen, A. C., Ciocca, M., Carlin, J. L., Bell, C. P. M., and Meng, Z. 2014. Variability in the 2MASS calibration fields: a search for transient obscuration events. Mon. Not. R. Astron. Soc, 441, 2691-2716.CrossRefGoogle Scholar
Rattenbury, N. J., Wyrzykowski, L., Kostrzewa-Rutkowska, Z., et al. 2015. OGLE-BLG182. 1. 162852: an eclipsing binary with a cir-cumstellar disc. Mon. Not. R. Astron. Soc, 447, L31-L34.CrossRefGoogle Scholar
Robuchon, G., Choblet, G., Tobie, G., et al. 2010. Coupling of thermal evolution and despinning of early Iapetus. Icarus, 207, 959-971.CrossRefGoogle Scholar
Rodriguez, J. E., Pepper, J., Stassun, K. G., et al. 2013. Occultation of the T Tauri star RW Aurigae A by its tidally disrupted disk. Astron. J., 146, 112.CrossRefGoogle Scholar
Rodriguez, J. E., Stassun, K. G., Cargile, P., et al. 2016. DM Ori: A young star occulted by a disturbance in its protoplanetary disk. Astrophys. /., 831, 74.
Rousselot, P. 2008. 174P/Echeclus: a strange case of outburst. Astron. Astrophys., 480, 543-550.CrossRefGoogle Scholar
Ruprecht, J. D., Bosh, A. S., Person, M. J., et al. 2015. 29 November 2011 stellar occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 252, 271-276. Schenk, P., Hamilton, D. P.,CrossRefGoogle Scholar
Johnson, R. E., et al. 2011. Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus, 211, 740-757.Google Scholar
Scott, E. L., Mamajek, E. E., Pecaut, M. J., et al. 2014. Modeling transiting circumstellar disks: Characterizing the newly discovered eclipsing disk system OGLE LMC-ECL-11893. Astrophys. J., 797, 6.CrossRefGoogle Scholar
Scotti, J. V. 1997. Discovery of 1997 CU26. Minor Planet Electronic Circulars, Feb., Dll.
Showalter, M. R., and Hamilton, D. P. 2010. Potential for rings at Pluto. In: Nix and Hydra: Five Years after Discovery Meeting, Space Telescope Science Institute.
Showalter, M. R., and Hamilton, D. P. 2015. Resonant interactions and chaotic rotation of Pluto's small moons. Nature, 522, 45-49.CrossRefGoogle ScholarPubMed
Showalter, M. R., Hamilton, D. P., and Nicholson, P. D. 2006. A deep search for Martian dust rings and inner moons using the Hubble Space Telescope. Planet. Space Sci., 54, 844—854.CrossRefGoogle Scholar
Showalter, M. R., Hamilton, D. P., Stern, S. A., et al. 2011. New SateUite of (134340) Pluto: S/2011 (134340) 1. Central Bureau Electronic Telegrams, 2769, 1.Google Scholar
Showalter, M. R., Weaver, H. A., Stern, S. A., et al. 2012. New satellite of (134340) Pluto: S/2012 (134340) 1. IAU Circular, 9253.
Sicardy, B. 2006. Dynamics of planetary rings. Page 183 of: Souchay, J. (ed.), Dynamics of Extended Celestial Bodies and Rings. Lecture Notes in Physics, Berlin Springer Verlag, vol. 682.CrossRefGoogle Scholar
Sicardy, B., Ortiz, J. L., Assafin, M., et al. 2011. A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature, 478, 493-96.CrossRefGoogle Scholar
Sicardy, B., Braga-Ribas, E., Ortiz, J. L., et al. 2014. Dense and narrow rings around the Centaur object (10199) Chariklo. Page 408. 01 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.Google Scholar
Singer, K. N., McKinnon, W. B., and Schenk, P. M. 2013 (Mar.). Large landslides on icy satellites: New examples from Rhea and Tethys. Page 2955 of: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 44.Google Scholar
Smith, B. A., Soderblom, L., Beebe, R. E., et al. 1981. Encounter with Saturn -Voyager 1 imaging science results. Science, 212, 163-191.Google ScholarPubMed
Smith, B. A., Soderblom, L., Batson, R. M., et al. 1982. A new look at the Saturn system —The Voyager 2 images. Science, 215, 504—537.CrossRefGoogle Scholar
Soter, S. 1971. The dust belts of Mars. Cornell CRSR Report #462.
Spencer, J. R., Showalter, M. R., Stern, S. A., et al. 2015. Small satellites and dust in the Pluto system: Upper limits and implications. Page 101. 05 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.Google Scholar
Steffi, A. J., and Stern, S. A. 2007. First constraints on rings in the Pluto system. Astron. J., 133, 1485-1489.Google Scholar
Stern, S. A., Weaver, H. A., Steffi, A. J., et al. 2006. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt. Nature, 439, 946-948.CrossRefGoogle ScholarPubMed
Tenishev, V., Combi, M. R., and Rubin, M. 2011. Numerical sim-ulation of dust in a cometary coma: Application to comet 67P/Churyumov-Gerasimenko. Astrophys. J., 732, 104.CrossRefGoogle Scholar
Thomas, P. C. 2010. Sizes, shapes, and derived properties of the sat-urnian satellites after the Cassini nominal mission. Icarus, 208, 395-01.CrossRefGoogle Scholar
Thomas, P. C., Burns, J. A., Helfenstein, P., et al. 2007. Shapes of the saturnian icy satellites and their significance. Icarus, 190, 573-584.CrossRefGoogle Scholar
Throop, H. B., French, R. G., Shoemaker, K., et al. 2015. Limits on Pluto's ring system from the June 12 2006 stellar occultation and implications for the New Horizons impact hazard. Icarus, 246, 345-351.CrossRefGoogle Scholar
Tiscareno, M. S. 2013. Planetary rings. In: Oswalt, T. D., French, L. M., and Kalas, P., eds., Planets, Stars, and Stellar Systems, Volume 3: Solar and Stellar Planetary Systems. Springer. Pages 309—376 (arXiv: 1112. 3305).Google Scholar
Tiscareno, M. S., Burns, J. A., Cuzzi, J. N., and Hedman, M. M. 2010. Cassini imaging search rules out rings around Rhea. Geophys. Res. Letters, 37, L14205.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., and Castillo-Rogez, J. 2013. Compositions and origins of outer planet systems: Insights from the Roche critical density. Astrophys. J. Letters, 765, L28.Google Scholar
van Werkhoven, T. I. M., Kenworthy, M. A., and Mamajek, E. E. 2014. Analysis of 1SWASP J140747. 93-394542. 6 eclipse fine-structure: hints of exomoons. Mon. Not. R. Astron. Soc, 441, 2845-2854.CrossRefGoogle Scholar
Weaver, H. A., Stern, S. A., Mutchler, M. J., et al. 2006. Discovery of two new satellites of Pluto. Nature, 439, 943-945.CrossRefGoogle ScholarPubMed
Zuluaga, J. I., Kipping, D. M., Sucerquia, M., and Alvarado, J. A. 2015. A novel method for identifying exoplanetary rings. Astrophys. J., Letters, 803, L14.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×