Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-10-30T13:06:29.346Z Has data issue: false hasContentIssue false

7 - The Comparative Study of Categorization

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

Categorization – assimilating objects to psychological equivalence classes – is a crucial cognitive capacity that has always enhanced vertebrate fitness. This chapter reviews from a primate perspective the state of knowledge in comparative categorization’s subdomains: prototypes, exemplars, rules, and abstractions. Primate studies have made a profound contribution to the prototype-exemplar debate – essentially resolving it. They have illuminated the evolutionary emergence of a cognitive capacity for category rules, illuminating also the emergence of humans’ explicit-declarative cognition. In this area, primates appear as a pivotal transitional form. In the literature on abstract concepts (e.g., Same-Different), primate studies highlight the differences in cognitive capacities across vertebrate lines. The review will demonstrate the crucial role of a fitness/ecological perspective in understanding categorization as an adaptive, information-processing capability. It will raise important questions about the similarity structure of natural (and unnatural) kinds and categories. It will show strong continuities between human and animal cognition, but important discontinuities as well. In all the subdomains, the primates have been extraordinary behavioral ambassadors to the broader field of categorization.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.Google Scholar
Arbuthnott, G. W., Ingham, C. A., & Wickens, J. R. (2000). Dopamine and synaptic plasticity in the neostriatum. Journal of Anatomy, 196, 587596.Google Scholar
Ashby, F. G., & Ennis, J. M. (2006). The role of the basal ganglia in category learning. In Ross, B. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 46, pp. 136). Elsevier Academic Press.Google Scholar
Ashby, F. G., Smith, J. D., & Rosedahl, L. A. (2020). Dissociations between rule-based and information-integration categorization are not caused by differences in task difficulty. Memory & Cognition, 48, 541552.Google Scholar
Aydin, A., & Pearce, J. M. (1994). Prototype effects in categorization by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 20(3), 264277.Google Scholar
Briscoe, E., & Feldman, J. (2011). Conceptual complexity and the bias/variance tradeoff. Cognition, 118, 216.CrossRefGoogle ScholarPubMed
Brooks, L. R. (1978). Nonanalytic concept formation and memory for instances. In Rosch, E. & Lloyd, B. B. (Eds.), Cognition and categorization (pp. 169211). Erlbaum.Google Scholar
Broschard, M. B., Kim, J., Love, B. C., Wasserman, E. A., & Freeman, J. H. (2019). Selective attention in rat visual category learning. Learning & Memory, 26, 8492.Google Scholar
Casale, M. B., Roeder, J. L., & Ashby, F. G. (2012). Analogical transfer in perceptual categorization. Memory & Cognition, 40, 434449.Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world: Inside the mind of another species. University of Chicago Press.Google Scholar
Cook, R. G., & Smith, J. D. (2006). Stages of abstraction and exemplar memorization in pigeon category learning. Psychological Science, 17, 10591067.CrossRefGoogle ScholarPubMed
D’Amato, M. R., & Colombo, M. (1989). On the limits of the matching concept in monkeys (Cebus apella). Journal of the Experimental Analysis of Behavior, 52, 225236.Google Scholar
D’Amato, M. R., Salmon, D. P., & Colombo, M. (1985). Extent and limits of the matching concept in monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes, 11, 3551.Google Scholar
Fagot, J., & Parron, C. (2010). Relational matching in baboons (Papio papio) with reduced grouping requirements. Journal of Experimental Psychology: Animal Behavior Processes, 36, 184193.Google Scholar
Fagot, J., & Thompson, R. K. R. (2011). Generalized relational matching by guinea baboons (Papio papio) in two-by-two-item analogy problems. Psychological Science, 22, 13041309.Google Scholar
Flemming, T. M., Thompson, R. K. R., Beran, M. J., & Washburn, D. A. (2011). Analogical reasoning and the differential outcome effect: Transitory bridging of the conceptual gap for rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 37, 353360.Google ScholarPubMed
Flemming, T. M., Thompson, R. K. R., & Fagot, J. (2013). Baboons, like humans, solve analogy by categorical abstraction of relations. Animal Cognition, 16, 519524.CrossRefGoogle ScholarPubMed
Gentner, D. (2003). Why we’re so smart. In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind: Advances in the study of language and thought (pp. 195235). MIT Press.Google Scholar
Gillan, D. J., Premack, D., & Woodruff, G. (1981). Reasoning in the chimpanzee: I. analogical reasoning. Journal of Experimental Psychology: Animal Behavior Processes, 7, 117.Google Scholar
Goldin-Meadow, S. (2003). Thought before language: Do we think ergative? In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind: Advances in the study of language and thought (pp. 493522). MIT Press.CrossRefGoogle Scholar
Gonzalez, R. C., Gentry, G. V., & Bitterman, M. E. (1954). Relational discrimination of intermediate size in the chimpanzee. Journal of Comparative and Physiological Psychology, 47, 385388.Google Scholar
Grillner, S., Robertson, B., & Stephenson-Jones, M. (2013). The evolutionary origin of the vertebrate basal ganglia and its role in action selection. Journal of Physiology, 591, 54255431.Google Scholar
Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56, 5165.Google Scholar
Herrnstein, R. J. (1990). Levels of stimulus control: A functional approach. Cognition, 37, 133166.Google Scholar
Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2, 285302.Google Scholar
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304309.Google Scholar
Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of exemplar-based generalization and the abstraction of categorical information. Journal of Experimental Psychology: Human Learning and Memory, 7, 418439.Google Scholar
Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104, 427466.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology, Vol. I. Henry Holt and Co.Google Scholar
Jitsumori, M. (1996). A prototype effect and categorization of artificial polymorphous stimuli in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 22, 405419.Google Scholar
Katz, J. S., Wright, A. A., & Bachevalier, J. (2002). Mechanisms of same-different abstract-concept learning by rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 28, 358368.Google Scholar
Knowlton, B. J., & Squire, L. R. (1993). The learning of categories: Parallel brain systems for item memory and category knowledge. Science, 262, 17471749.Google Scholar
Köhler, W. (1938). Simple structural functions in the chimpanzee and in the chicken. In Ellis, W. D. (Ed.), A source book of Gestalt psychology (pp. 217227). Kegan Paul, Trench, Trubner & Company.Google Scholar
Krechevsky, I. (1932). “Hypotheses” in rats. Psychological Review, 39, 516532.Google Scholar
Liljeholm, M., & O’Doherty, J. P. (2012). Contributions of the striatum to learning, motivation, and performance: An associative account. Trends in Cognitive Science, 16, 467475.CrossRefGoogle ScholarPubMed
Locke, J. (1690). An essay concerning human understanding. Troutman & Hayes.CrossRefGoogle Scholar
Malt, B. C. (1995). Category coherence in cross-cultural perspective. Cognitive Psychology, 29, 85148.Google Scholar
Maugard, A., Marzouki, Y., & Fagot, J. (2013). Contribution of working memory processes to relational matching-to-sample performance in baboons (Papio papio). Journal of Comparative Psychology, 127, 370379.Google Scholar
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207238.Google Scholar
Pearce, J. M. (1994). Discrimination and categorization. In Mackintosh, N. J. (Ed.), Animal learning and cognition (pp. 109134). Academic Press.Google Scholar
Pearce, J. M., Esber, G. R., George, D. N., & Haselgrove, M. (2008). The nature of discrimination learning in pigeons. Learning & Behavior, 36, 188199.Google Scholar
Pepperberg, I. M. (1990). Cognition in an African gray parrot (Psittacus erithacus): Further evidence for comprehension of categories and labels. Journal of Comparative Psychology, 104, 4152.CrossRefGoogle Scholar
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353363.CrossRefGoogle ScholarPubMed
Premack, D. (1976). Intelligence in ape and man. Lawrence Erlbaum.Google Scholar
Premack, D. (1978). On the abstractness of human concepts: Why it would be difficult to talk to a pigeon. In Hulse, S. H., Fowler, H., & Honig, W. K. (Eds.), Cognitive processes in animal behavior (pp. 423451). Erlbaum.Google Scholar
Premack, D. (1983). The codes of man and beasts. Behavioral and Brain Sciences, 6, 125167.Google Scholar
Qadri, M. A. J., Ashby, F. G., Smith, J. D., & Cook, R. G. (2019). Testing analogical rule transfer in pigeons (Columba livia). Cognition, 183, 256268.Google Scholar
Robinson, A. L., Heaton, R. K., Lehman, R. A., & Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology, 48, 605614.Google Scholar
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573605.Google Scholar
Schwartz, B. L. (2008). Working memory load differentially affects tip-of-the-tongue states and feeling-of-knowing judgments. Memory & Cognition, 36, 919.Google Scholar
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 13171323.CrossRefGoogle Scholar
Shepard, R. N. (2001). Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences, 24, 581601.CrossRefGoogle ScholarPubMed
Shields, W. E., Smith, J. D., & Washburn, D. A. (1997). Uncertain responses by humans and rhesus monkeys (Macaca mulatta) in a psychophysical same-different task. Journal of Experimental Psychology: General, 126, 147164.Google Scholar
Smith, J. D. (2002). Exemplar theory’s predicted typicality gradient can be tested and disconfirmed. Psychological Science, 13, 437442.Google Scholar
Smith, J. D. (2014). Prototypes, exemplars, and the natural history of categorization. Psychonomic Bulletin & Review, 21, 312331.Google Scholar
Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering, B., Cook, R. G., & Grace, R. C. (2011). Pigeons’ categorization may be exclusively nonanalytic. Psychonomic Bulletin & Review, 18, 414421.Google Scholar
Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J., & Ashby, F. G. (2010). Implicit and explicit category learning by macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 36, 5465.Google Scholar
Smith, J. D., Berg, M. E., Cook, R. G., Boomer, J., Crossley, M. J., Murphy, M. S., Spiering, B., Beran, M. J., Church, B. A., Ashby, F. G., & Grace, R. C. (2012). Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Reviews, 36, 23552369.Google Scholar
Smith, J. D., Boomer, J., Zakrzewski, A. C., Roeder, J. L., Church, B. A., & Ashby, F. G. (2014). Deferred feedback sharply dissociates implicit and explicit category learning. Psychological Science, 25, 447457.CrossRefGoogle ScholarPubMed
Smith, J. D., Chapman, W. P., & Redford, J. S. (2010). Stages of category learning in monkeys (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 36, 3953.Google ScholarPubMed
Smith, J. D., & Church, B. A. (2018). Dissociable learning processes in comparative psychology. Psychonomic Bulletin & Review, 25, 15651584.Google Scholar
Smith, J. D., Couchman, J. J., & Beran, M. J. (2014). Animal metacognition: A tale of two comparative psychologies. Journal of Comparative Psychology, 128, 115131.Google Scholar
Smith, J. D., Coutinho, M. V. C., Church, B. A., & Beran, M. J. (2013). Executive-attentional uncertainty responses by rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: General, 142, 458475.Google Scholar
Smith, J. D., Coutinho, M. V. C., & Couchman, J. J. (2011). The learning of exclusive-or categories by monkeys (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 37, 2029.Google Scholar
Smith, J. D., Crossley, M. J., Boomer, J., Church, B. A., Beran, M. J., & Ashby, F. G. (2012). Implicit and explicit category learning by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 126, 294304.Google Scholar
Smith, J. D., Flemming, T. M., Boomer, J., Beran, M. J., & Church, B. A. (2013). Fading perceptual resemblance: A path for rhesus macaques (Macaca mulatta) to conceptual matching? Cognition, 129, 598614.Google Scholar
Smith, J. D., Jackson, B. N., & Church, B. A. (2019). Breaking the perceptual-conceptual barrier: Relational matching and working memory. Memory & Cognition, 47, 544560.CrossRefGoogle ScholarPubMed
Smith, J. D., Jackson, B. N., & Church, B. A. (2020). Monkeys (Macaca mulatta) learn two-choice discriminations under displaced reinforcement. Journal of Comparative Psychology, 134, 423434.Google Scholar
Smith, J. D., Jamani, S., Boomer, J., & Church, B. A. (2018). One-back reinforcement dissociates implicit-procedural and explicit-declarative category learning. Memory & Cognition, 46, 261273.Google Scholar
Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 14111436.Google Scholar
Smith, J. D., & Minda, J. P. (2001). Journey to the center of the category: The dissociation in amnesia between categorization and recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 9841002.Google Scholar
Smith, J. D., Redford, J. S., & Haas, S. M. (2008). Prototype abstraction by monkeys (Macaca mulatta). Journal of Experimental Psychology: General, 137, 390401.Google Scholar
Smith, J. D., Zakrzewski, A. C., Johnston, J. J. R., Roeder, J. L., Boomer, J., Ashby, F. G., & Church, B. A. (2015). Generalization of category knowledge and dimensional categorization in humans (Homo sapiens) and nonhuman primates (Macaca mulatta). Journal of Experimental Psychology: Animal Learning and Cognition, 41, 322335.Google ScholarPubMed
Smith, J. D., Zakrzewski, A. C., Johnson, J. M., Valleau, J. C., & Church, B. A. (2016). Categorization: The view from animal cognition. Behavioral Sciences, 6, 12.Google Scholar
Spence, K. W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430444.Google Scholar
Sutton, J. E., & Shettleworth, S. J. (2008). Memory without awareness: Pigeons do not show metamemory in delayed matching to sample. Journal of Experimental Psychology: Animal Behavior Processes, 34, 266282.Google Scholar
Thompson, R. K. R., & Oden, D. L. (2000). Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cognitive Science, 24, 363396.Google Scholar
Thompson, R. K. R., Oden, D. L., & Boysen, S. T. (1997). Language-naive chimpanzees (Pan troglodytes) judge relations between relations in a conceptual matching-to-sample task. Journal of Experimental Psychology: Animal Behavior Processes, 23, 3143.Google Scholar
Truppa, V., Mortari, E. P., Garofoli, D., Privitera, S., & Visalberghi, E. (2011). Same/different concept learning by capuchin monkeys in matching-to-sample tasks. PLoS ONE, 6, e23809.Google Scholar
Wasserman, E. A., Castro, L., & Freeman, J. H. (2012). Same-different categorization in rats. Learning & Memory, 19, 142145.CrossRefGoogle ScholarPubMed
Wasserman, E. A., Fagot, J., & Young, M. E. (2001). Same-different conceptualization by baboons (Papio papio): The role of entropy. Journal of Comparative Psychology, 115, 4252.Google Scholar
Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual behavior in pigeons: Categories, subcategories, and pseudocategories. Journal of Experimental Psychology: Animal Behavior Processes, 14, 235246.Google Scholar
White, K. G., Alsop, B., & Williams, L. (1993). Prototype identification and categorization of incomplete figures by pigeons. Behavioural Processes, 30, 253258.Google Scholar
Wickens, J. (1993). A theory of the striatum. Pergamon Press.Google Scholar
Wright, A. A., Magnotti, J. F., Katz, J. S., Leonard, K., Vernouillet, A., & Kelly, D. M. (2017). Corvids outperform pigeons and primates in learning a basic concept. Psychological Science, 28, 437444.Google Scholar
Wright, A. A., Shyan, M. R., & Jitsumori, M. (1990). Auditory same/different concept learning by monkeys. Animal Learning & Behavior, 18, 287294.Google Scholar
Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C. R., Urakubo, H., Ishii, S., & Kasai, H. (2014). A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345, 16161620.Google Scholar
Young, M. E., Wasserman, E. A., & Garner, K. L. (1997). Effects of number of items on the pigeon’s discrimination of same from different visual displays. Journal of Experimental Psychology: Animal Behavior Processes, 23, 491501.Google Scholar
Zakrzewski, A. C., Church, B. A., & Smith, J. D. (2018). The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Comparative Psychology, 132, 5874.Google Scholar
Zentall, T., & Hogan, D. (1974). Abstract concept learning in the pigeon. Journal of Experimental Psychology, 102, 393398.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×