Book contents
- Vesta and Ceres: Insights from the Dawn Mission for the Origin of the Solar System
- Cambridge Planetary Science
- Vesta and Ceres
- Copyright page
- Contents
- Contributors
- Preface
- Part I Remote Observations and Exploration of Main Belt Asteroids
- Part II Key Results from Dawn’s Exploration of Vesta and Ceres
- 3 Protoplanet Vesta and HED Meteorites
- 4 The Internal Evolution of Vesta
- 5 Geomorphology of Vesta
- 6 The Surface Composition of Vesta
- 7 Ceres’ Surface Composition
- 8 Carbon and Organic Matter on Ceres
- 9 Ammonia on Ceres
- 10 Geomorphology of Ceres
- 11 Ceres’ Internal Evolution
- 12 Geophysics of Vesta and Ceres
- Part III Implications for the Formation and Evolution of the Solar System
- Index
- Plate Section (PDF Only)
- References
5 - Geomorphology of Vesta
from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres
Published online by Cambridge University Press: 01 April 2022
- Vesta and Ceres: Insights from the Dawn Mission for the Origin of the Solar System
- Cambridge Planetary Science
- Vesta and Ceres
- Copyright page
- Contents
- Contributors
- Preface
- Part I Remote Observations and Exploration of Main Belt Asteroids
- Part II Key Results from Dawn’s Exploration of Vesta and Ceres
- 3 Protoplanet Vesta and HED Meteorites
- 4 The Internal Evolution of Vesta
- 5 Geomorphology of Vesta
- 6 The Surface Composition of Vesta
- 7 Ceres’ Surface Composition
- 8 Carbon and Organic Matter on Ceres
- 9 Ammonia on Ceres
- 10 Geomorphology of Ceres
- 11 Ceres’ Internal Evolution
- 12 Geophysics of Vesta and Ceres
- Part III Implications for the Formation and Evolution of the Solar System
- Index
- Plate Section (PDF Only)
- References
Summary
A search for volcanic and plutonic features on Vesta was an important driver for a geomorphological examination of the asteroid. Another goal was to determine if the asteroid was a protoplanet, one of the remnants of the material that formed the Solar System. Therefore, NASA’s Dawn spacecraft collected imaging, spectroscopic, and elemental abundance data, which were utilized to examine the asteroid’s surface. A digital terrain model was created and the asteroid’s various geomorphic features were analyzed. Large scale features include the Rheasilvia and Veneneia impact basins, the Divalia Fossae and Saturnalia Fossae trough sets, and the Vestalia Terra plateau. Small scale features include deposits of dark material, pitted terrain, pit crater chains, mass-wasting deposits, and impact craters. While these geomorphic analyses revealed no evidence of volcanism, evidence of magmatic activity on Vesta was identified. In addition, analysis of Vesta’s geomorphology suggests that it is not only a protoplanet, but also an intermediate body between asteroids and planets.
Keywords
- Type
- Chapter
- Information
- Vesta and CeresInsights from the Dawn Mission for the Origin of the Solar System, pp. 67 - 80Publisher: Cambridge University PressPrint publication year: 2022