Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T00:36:01.407Z Has data issue: false hasContentIssue false

Section IV - Endometrial Cancer

Published online by Cambridge University Press:  20 July 2023

Dennis S. Chi
Affiliation:
Memorial Sloan-Kettering Cancer Center, New York
Nisha Lakhi
Affiliation:
Richmond University Medical Center, Staten Island
Nicoletta Colombo
Affiliation:
University of Milan-Bicocca
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Taylan, E, et al. Fertility preservation in gynecologic cancers. Gynecol Oncol 2019;155:522529.CrossRefGoogle ScholarPubMed
Oktay, K, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 2018;36:19942001.CrossRefGoogle ScholarPubMed
Oktay, K, et al. Robot-assisted orthotopic and heterotopic ovarian tissue transplantation techniques: surgical advances since our first success in 2000. Fertil Steril 2019;111:604606.CrossRefGoogle ScholarPubMed
Azim, A et al. Letrozole for ovulation induction and fertility preservation by embryo cryopreservation in young women with endometrial carcinoma. Fertil Steril 2007;88:657664.Google Scholar
Sonmezer, M, et al. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril 2011;95:2125.e9–2125.e11.CrossRefGoogle ScholarPubMed

References

National Comprehensive Cancer Network. Uterine Neoplasms (Version 2.2020). Available from: www.nccn.org/professionals/physician_gls/pdf/uterine.pdf [last accessed September 19, 2020].Google Scholar
Gunderson, CC, et al. Oncologic and reproductive outcomes with progestin therapy in women with endometrial hyperplasia and grade 1 adenocarcinoma: a systematic review. Gynecol Oncol 2012;125:477482.CrossRefGoogle ScholarPubMed
Son, J, et al. Endometrial cancer in young women: prognostic factors and treatment outcomes in women aged <40 years. Int J Gynecol Cancer 2020;30:631639.CrossRefGoogle ScholarPubMed
Acosta-Torres, S, et al. The addition of metformin to progestin therapy in the fertility-sparing treatment of women with atypical hyperplasia/endometrial intraepithelial neoplasia or endometrial cancer: little impact on response and low live-birth rates. Gynecol Oncol 2020;157(2):348356.CrossRefGoogle ScholarPubMed
Walsh, C, et al. Coexisting ovarian malignancy in young women with endometrial cancer. Obstet Gynecol 2005;106(4):693.CrossRefGoogle ScholarPubMed

References

Holloway, RW, et al. Sentinel lymph node mapping and staging in endometrial cancer: a society of gynecologic oncology literature review with consensus recommendations, Gynecol Oncol 2017;146:405415. https://doi.org/10.1016/j.ygyno.2017.05.027CrossRefGoogle ScholarPubMed
Soliman, PT, et al. A prospective validation study of sentinel lymph node mapping for high-risk endometrial cancer. Gynecol Oncol 2017;146:234239. https://doi.org/10.1016/j.ygyno.2017.05.016CrossRefGoogle ScholarPubMed
Rossi, EC, et al. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective cohort study, Lancet Oncol 2017;18:384392. https://doi.org/10.1016/S1470-2045(17)30068-2Google Scholar
Schlappe, BA, et al. Multicenter study comparing oncologic outcomes after lymph node assessment via a sentinel lymph node algorithm versus comprehensive pelvic and paraaortic lymphadenectomy in patients with serous and clear cell endometrial carcinoma, Gynecol Oncol 2020;156:6269. https://doi.org/10.1016/j.ygyno.2019.11.002Google Scholar
Multinu, F, et al. Role of lymphadenectomy in endometrial cancer with nonbulky lymph node metastasis: comparison of comprehensive surgical staging and sentinel lymph node algorithm. Gynecol Oncol 2019;155:177185. https://doi.org/10.1016/j.ygyno.2019.09.011Google Scholar

References

Mariani, A, et al. Prospective assessment of lymphatic dissemination in endometrial cancer: a paradigm shift in surgical staging. Gynecol Oncol 2008;109(1):1118.CrossRefGoogle ScholarPubMed
Eriksson, AGZ, et al. Comparison of a sentinel lymph node and a selective lymphadenectomy algorithm in patients with endometrioid endometrial carcinoma and limited myometrial invasion. Gynecol Oncol 2016;140(3):394399.CrossRefGoogle Scholar
Buda, A, et al. Lymph node evaluation in high-risk early-stage endometrial cancer: a multi-institutional retrospective analysis comparing the sentinel lymph node (SLN) algorithm and SLN with selective lymphadenectomy. Gynecol Oncol 2018;150(2):261266.CrossRefGoogle ScholarPubMed
Rossi, EC, et al. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective, cohort study. Lancet Oncol 2017;18(3):384392.CrossRefGoogle Scholar
Tanner, EJ, et al. The utility of sentinel lymph node mapping in high-grade endometrial cancer. Int J Gynecol Cancer 2017;27(7):14161421.Google Scholar
Cusimano, MC, et al. Assessment of sentinel lymph node biopsy vs lymphadenectomy for intermediate- and high-grade endometrial cancer staging. JAMA Surg 2021; 156(2):157164.CrossRefGoogle ScholarPubMed
Petrelli, F, et al. Axillary dissection compared to sentinel node biopsy for the treatment of pathologically node-negative breast cancer: a meta-analysis of four randomized trials with long-term follow up. Oncol Rev 2012;6(2):e20.Google Scholar
Morton, DL, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. New Engl J Med 2014;370(7):599609.Google Scholar
Todo, Y, et al. Survival effect of para-aortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis. Lancet 2010;375:11651172.CrossRefGoogle ScholarPubMed
Frost, JA, et al. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst Rev 2015;2015(9):CD007585.Google Scholar
Buskwofie, A, et al. Role of paraaortic nodal evaluation in women with uterine cancer. Gynecol Oncol 2019;154:105106.Google Scholar

References

de Boer, SM, et al; for PORTEC Study Group. Clinical consequences of upfront pathology review in the randomised PORTEC-3 trial for high-risk endometrial cancer. Ann Oncol 2018;29(2):424430. https://doi.org/10.1093/annonc/mdx753CrossRefGoogle Scholar
Cancer Genome Atlas Research Network, Kandoth, C, et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497(7447):6773. https://doi.org/10.1038/nature12113. Erratum in: Nature 2013;500(7461):242.Google Scholar
DeLair, DF, et al. The genetic landscape of endometrial clear cell carcinomas. J Pathol 2017;243(2):230241. https://doi.org/10.1002/path.4947CrossRefGoogle ScholarPubMed
Stelloo, E, et al. Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer: combined analysis of the PORTEC cohorts. Clin Cancer Res 2016;22(16):42154224. https://doi.org/10.1158/1078-0432.CCR-15-2878CrossRefGoogle ScholarPubMed
Salvador, MU, et al. Comprehensive paired tumor/germline testing for lynch syndrome: bringing resolution to the diagnostic process. J Clin Oncol 2019;37(8):647657. https://doi.org/10.1200/JCO.18.00696CrossRefGoogle Scholar

References

Bokhman, JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 1983;15(1):1017.CrossRefGoogle ScholarPubMed
International Agency for Research on Cancer. WHO Classification of Tumours. Female Genital Tumours (5th edn.). 2020.Google Scholar
León-Castillo, A, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy. J Clin Oncol 2020;38(29):33883397.CrossRefGoogle ScholarPubMed
Buus, R, et al. Molecular drivers of oncotype DX, prosigna, endopredict, and the breast cancer index: a TransATAC study. J Clin Oncol 2020;2020:Jco2000853.Google Scholar
van den Heerik, A, et al. PORTEC-4a: international randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer. Int J Gynecol Cancer 2020;30(12):20022007.Google Scholar

References

Randall, ME, et al. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2006;24:3644.Google Scholar
Homesley, HD, et al. A randomized phase III trial in advanced endometrial carcinoma of surgery and volume directed radiation followed by cisplatin and doxorubicin with or without paclitaxel: a Gynecologic Oncology Group study. Gynecol Oncol 2009;112:543552.Google Scholar
de Boer, SM, et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol 2018;19(3):295309.Google Scholar
de Boer, SM, et al. Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial. Lancet Oncol 2019;20:12731285.Google Scholar
Matei, D, et al. Adjuvant chemotherapy plus radiation for locally advanced endometrial cancer. N Engl J Med 2019;380:23172326.Google Scholar

References

de Boer, SM, et al. Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial. Lancet Oncol 2019;20(9):12731285.CrossRefGoogle ScholarPubMed
de Boer, SM, et al. Toxicity and quality of life after adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol 2016;17(8):11141126.Google Scholar
Matei, D, et al. Adjuvant chemotherapy plus radiation for locally advanced endometrial cancer. N Engl J Med 2019;380(24):23172326.Google Scholar
Kandoth, C, et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497(7447):6773.Google ScholarPubMed
León-Castillo, A, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy. J Clin Oncol 2020;38(29):33883397.CrossRefGoogle ScholarPubMed

References

del Carmen, MG, et al. Uterine papillary serous cancer: a review of the literature. Gynecol Oncol 2012;127(3):651661.Google Scholar
Abu-Rustum, NR, et al. NCCN Guidelines® Insights: Uterine Neoplasms, Version 3.2021. J Natl Compr Canc Netw 2021;19(8):888895.Google Scholar
van der Putten, LJ, et al. Population-based treatment and outcomes of stage I uterine serous carcinoma. Gynecol Oncol 2014;132(1):6164.Google Scholar
Velker, V, et al. Role of adjuvant therapy for stage ia serous and clear cell uterine cancer: is observation a valid strategy? Int J Gynecol Cancer 2016;26(3):491496.CrossRefGoogle ScholarPubMed
Mysona, DP, et al. Clinical calculator predictive of chemotherapy benefit in stage 1 A uterine papillary serous cancers. Gynecol Oncol 2020;156(1):7784.CrossRefGoogle ScholarPubMed

References

Boruta, DM, et al.Management of women with uterine papillary serous cancer: a Society of Gynecologic Oncology (SGO) review. Gynecol Oncol 2009;115:142153.Google Scholar
Viswanathan, AN, et al. The importance of chemotherapy and radiation in uterine papillary serous carcinoma. Gynecol Oncol 2011;123:542547.Google Scholar
Hogberg, T, et al. Sequential adjuvant chemotherapy and radiotherapy in endometrial cancer – results from two randomised studies. Eur J Cancer 2010;46:24222431.Google Scholar
Nasioudis, D, et al. Adjuvant treatment for patients with FIGO stage I uterine serous carcinoma confined to the endometrium. Int J Gynecol Cancer 2020;30(8):10891094.Google Scholar
Welp, A, et al. Distant recurrence in a patient with polyp-confined stage IA serous endometrial carcinoma treated with adjuvant chemotherapy: a case report and review of literature. Gynecol Oncol Rep 2019;31:100512.Google Scholar
Mahdi, H, et al. Adjuvant vaginal brachytherapy decreases the risk of vaginal recurrence in patients with stage I non-invasive uterine papillary serous carcinoma. A multi-institutional study. Gynecol Oncol 2015;136(3):529533.Google Scholar

References

de Boer, SM, et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol 2018;19(3):295309.CrossRefGoogle ScholarPubMed
Secord, AA, et al. A multicenter evaluation of adjuvant therapy in women with optimally resected stage IIIC endometrial cancer. Gynecol Oncol 2013;128(1):6570.CrossRefGoogle ScholarPubMed
Geller, MA, et al. A phase II trial of carboplatin and docetaxel followed by radiotherapy given in a “sandwich” method for stage III, IV, and recurrent endometrial cancer. Gynecol Oncol 2011;121(1):112117.CrossRefGoogle Scholar
Glasgow, M, et al. Long-term follow-up of a phase II trial of multimodal therapy given in a “sandwich” method for stage III, IV, and recurrent endometrial cancer. Gynecol Oncol Res Pract 2016;3:6.CrossRefGoogle Scholar
Frimer, M, et al. Adjuvant pelvic radiation “sandwiched” between paclitaxel/carboplatin chemotherapy in women with completely resected uterine serous carcinoma: long-term follow-up of a prospective phase 2 trial. Int J Gynecol Cancer 2018;28(9):17811788.Google Scholar

References

Goodman, CR, et al. Association of chemotherapy and radiotherapy sequence with overall survival in locoregionally advanced endometrial cancer. Gynecol Oncol 2019;153(1):4148.Google Scholar
Bogani, G, et al. Role of adjuvant therapy in stage IIIC2 endometrial cancer. Int J Gynecol Cancer 2020;30(8):11691176.Google Scholar
Latham, AH, et al. Sequencing of therapy in women with stage III endometrial carcinoma receiving adjuvant combination chemotherapy and radiation. Gynecol Oncol 2019;155(1):1320.CrossRefGoogle ScholarPubMed
Lu, SM, et al. Sequential versus “sandwich” sequencing of adjuvant chemoradiation for the treatment of stage III uterine endometrioid adenocarcinoma. Gynecol Oncol 2015;137(1):2833.Google Scholar
Dogan, NU, et al. Comparison of “sandwich chemo-radiotherapy” and six cycles of chemotherapy followed by adjuvant radiotherapy in patients with stage IIIC endometrial cancer: a single center experience. Arch Gynecol Obstet 2013;288(4):845850.CrossRefGoogle ScholarPubMed

References

Barlin, JN, et al. Cytoreductive surgery for advanced or recurrent endometrial cancer: a meta-analysis. Gynecol Oncol 2010;118:1418.Google Scholar
Bristow, RE, et al. Stage IVB endometrial carcinoma: the role of cytoreductive surgery and determinants of survival. Gynecol Oncol 2000;78(2):8591.Google Scholar
Shih, KK, et al. Surgical cytoreduction in stage IV endometrioid endometrial carcinoma. Gynecol Oncol 2011;122(3):608611.CrossRefGoogle ScholarPubMed
Du Bois, AA, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol 2020;38:6000).Google Scholar
Eto, T, et al. Status of treatment for the overall population of patients with stage IVB endometrial cancer, and evaluation of the role of preoperative chemotherapy: a retrospective multi-institutional study of 426 patients in Japan. Gynecol Oncol 2013;131(3):574580.Google Scholar

References

Barlin JN, et al. Cytoreductive surgery for advanced or recurrent endometrial cancer: a meta-analysis. Gynecol Oncol 2010;118:1418. https://doi.org/10.1016/j.ygyno.2010.04.005Google ScholarPubMed
Coleman RL, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019;381:1929–1939. https://doi.org/10.1056/NEJMoa1902626CrossRefGoogle ScholarPubMed
Landrum LM, et al. Stage IVB endometrial cancer: does applying an ovarian cancer treatment paradigm result in similar outcomes? A case-control analysis. Gynecol Oncol 2009;112:337341. https://doi.org/10.1016/j.ygyno.2008.10.009Google Scholar
Lambrou NC, et al. Optimal surgical cytoreduction in patients with stage III and stage IV endometrial carcinoma: a study of morbidity and survival. Gynecol Oncol 2004;93:653658. https://doi.org/10.1016/j.ygyno.2004.03.015Google Scholar

References

Legge, F, et al. Clinical outcome of recurrent endometrial cancer: analysis of post-relapse survival by pattern of recurrence and secondary treatment. Int J Gynecol Cancer 2020;30(2):193200. https://doi.org/10.1136/ijgc-2019-000822CrossRefGoogle ScholarPubMed
Moukarzel, LA, et al. Non-exenterative surgical management of recurrent endometrial carcinoma. Gynecol Oncol 2021;162(2):268276. https://doi.org/10.1016/j.ygyno.2021.05.020Google Scholar
Barlin, JN, et al. Cytoreductive surgery for advanced or recurrent endometrial cancer: a meta-analysis. Gynecol Oncol 2010;118(1):1418. https://doi.org/10.1016/j.ygyno.2010.04.005Google Scholar
Hardarson, HA, et al. Vaginal vault recurrences of endometrial cancer in non-irradiated patients – radiotherapy or surgery. Gynecol Oncol Rep 2015;11:2630. https://doi.org/10.1016/j.gore.2015.01.002CrossRefGoogle ScholarPubMed
Tangjitgamol, S, et al. Role of surgical resection for lung, liver, and central nervous system metastases in patients with gynecological cancer: a literature review. Int J Gynecol Cancer 2004;14(3):399422. https://doi.org/10.1111/j.1048-891x.2004.14326.xGoogle Scholar

References

del Carmen, MG, et al. Recurrent endometrial cancer. Clin Obstet Gynecol 2011;54(2):266277.Google Scholar
Scarabelli, C, et al. Maximal cytoreductive surgery as a reasonable therapeutic alternative for recurrent endometrial carcinoma. Gynecol Oncol 1998;70(1):9093CrossRefGoogle ScholarPubMed
Campagnutta, E, et al. Surgical treatment of recurrent endometrial carcinoma. Cancer 2004;100(1): 8996.Google Scholar
Bristow, RE, et al. Salvage cytoreductive surgery for recurrent endometrial cancer. Gynecol Oncol 2006;103(1):281287.CrossRefGoogle ScholarPubMed
Awtrey, CS, et al. Surgical resection of recurrent endometrial carcinoma. Gynecol Oncol 2006;102:480488.Google Scholar

References

Lincoln, S, et al. Activity of paclitaxel as second-line chemotherapy in endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2003;88:277281. https://doi.org/10.1016/S0090-8258(02)00068-9Google Scholar
Ethier, J-L, et al. Is hormonal therapy effective in advanced endometrial cancer? A systematic review and meta-analysis. Gynecol Oncol 2017;147:158166. https://doi.org/10.1016/j.ygyno.2017.07.002Google Scholar
Decruze, SB, et al. Hormone therapy in advanced and recurrent endometrial cancer: a systematic review, Int J Gynecol Cancer 2007;17:964978. https://doi.org/10.1111/j.1525-1438.2007.00897.xGoogle Scholar
Kokka, F, et al. Hormonal therapy in advanced or recurrent endometrial cancer. Cochrane Database Syst Rev 2010 (online). https://doi.org/10.1002/14651858.CD007926.pub2Google Scholar
Slomovitz, BM, et al. Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma. J Clin Oncol 2015;33:930936. https://doi.org/10.1200/JCO.2014.58.3401CrossRefGoogle ScholarPubMed
Soliman, PT, et al. Metformin in women with advanced or recurrent endometrioid endometrial cancer: a multi-center, single arm, phase II study. Clin Cancer Res 2020;26:581587. https://doi.org/10.1158/1078-0432.CCR-19-0471Google Scholar
Mirza, MR, et al. LBA28 A randomised double-blind placebo-controlled phase II trial of palbociclib combined with letrozole (L) in patients (pts) with oestrogen receptor-positive (ER+) advanced/recurrent endometrial cancer (EC): NSGO-PALEO / ENGOT-EN3 trial. Ann Oncol 2020;31:S1160. https://doi.org/10.1016/j.annonc.2020.08.2258CrossRefGoogle Scholar

References

Miller, DS, et al. Carboplatin and paclitaxel for advanced endometrial cancer: final overall survival and adverse event analysis of a phase III trial (NRG Oncology/GOG0209). J Clin Oncol 2020;38(33):38413850.Google Scholar
Concin, N, et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int J Gynecol Cancer 2021;31(1):1239.CrossRefGoogle ScholarPubMed
Ethier, JL, et al. Is hormonal therapy effective in advanced endometrial cancer? A systematic review and meta-analysis. Gynecol Oncol 2017;147(1):158166.Google Scholar
Mileshkin, L, et al. Phase 2 study of anastrozole in recurrent estrogen (ER)/progesterone (PR) positive endometrial cancer: The PARAGON trial–ANZGOG 0903. Gynecol Oncol 2019;154(1):2937.CrossRefGoogle ScholarPubMed
Mirza, MR, et al. A randomised double-blind placebo-controlled phase II trial of palbociclib combined with letrozole (L) in patients (pts) with oestrogen receptor-positive (ER plus) advanced/recurrent endometrial cancer (EC): NSGO- PALEO/ENGOT-EN3 trial. Ann Oncol 2020;31(Suppl. 4):S1160. https://doi.org/10.1016/annonc/annonc325Google Scholar
Leon-Castillo, A, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy. J Clin Oncol 2020;38:3388e3397. https://doi.org/10.1200/JCO.20.00549CrossRefGoogle ScholarPubMed
Oaknin, A, et al. Clinical activity and safety of the anti-programmed death 1 monoclonal antibody dostarlimab for patients with recurrent or advanced mismatch repaire-deficient endometrial cancer: a nonrandomized phase 1 clinical trial. JAMA Oncol 2020;6v11:1766e1772. https://doi.org/10.1001/jamaoncol.2020.4515CrossRefGoogle Scholar
Fader, AN, et al. Randomized phase II trial of carboplatin-paclitaxel compared with carboplatin-paclitaxel-trastuzumab in advanced (stage III-IV) or recurrent uterine serous carcinomas that overexpress Her2/Neu (NCT01367002): updated overall survival analysis. Clin Cancer Res 2020;26(15):3928e3935.Google Scholar
Omalley, D, et al. KEYNOTE 158. Ann Oncol 2019;30(Suppl. 5):v403ev404. https://doi.org/10.1093/annonc/mdz25Google Scholar
Oaknin, A, et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient (dMMR) or proficient (MMRp) endometrial cancer (EC): results from GARNET. Ann Oncol 2020;31(Suppl. 4):S1142S1215. 10.1016/annonc/annonc325Google Scholar
Makker, V, et al. Study 309–KEYNOTE-775 Investigators. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med 2022;386(5):437448.Google Scholar
Colombo, N, et al. Outcomes by histology and prior therapy with lenvatinib plus pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer (Study 309/KEYNOTE-775). Ann Oncol 2021;32(Suppl. 5):S725S772. https://doi.org/10.1016/annonc/annonc703CrossRefGoogle Scholar

References

Kandoth, C, et al. Cancer Genome Atlas Research Network,Integrated genomic characterization of endometrial carcinoma. Nature 2013;497(7447):6773.Google Scholar
Talhouk, A, et al. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017; 123(5):802813.Google Scholar
O’Malley, DM, et al. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 Study. J Clin Oncol 2022;40(7):752761.Google Scholar
Oaknin, A, et al. Clinical activity and safety of the anti-programmed death 1 monoclonal antibody dostarlimab for patients with recurrent or advanced mismatch repair-deficient endometrial cancer: a nonrandomized phase 1 clinical trial. JAMA Oncol 2020;6(11):17661772.Google Scholar
Makker, V, et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med 2022;386(5):437448.CrossRefGoogle ScholarPubMed

References

Cortes-Ciriano, I, et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 2017;8:15180.Google Scholar
Marabelle, A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 Study. J Clin Oncol 2020;38(1):110.CrossRefGoogle ScholarPubMed
Oaknin, A, et al. Safety and antitumor activity of dostarlimab in patients (pts) with advanced or recurrent DNA mismatch repair deficient (dMMR) or proficient (MMRp) endometrial cancer (EC): results from GARNET. J Immunother Cancer 2022 (online). https://doi.org/10.1136/jitc-2021-003777Google Scholar
Antill, Y, et al. Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J Immunother Cancer 2021;9(6):e002255.Google Scholar
Konstantinopoulos, PA, et al. Phase II study of avelumab in patients with mismatch repair deficient and mismatch repair proficient recurrent/persistent endometrial cancer. J Clin Oncol 2019;37(30):27862794.Google Scholar
Makker, V, et al. A multicenter, open-label, randomized phase 3 study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer: Study 309/KEYNOTE-775. Society of Gynecologic Oncology 2021 Virtual Annual Meeting on Women’s Cancer. Abstract 37/ID 11512. Presented March 19, 2021.Google Scholar

References

Denschlag, D, et al. Uterine carcinosarcomas – diagnosis and management. Oncol Res Treat 2018;41(11):675679.Google Scholar
Menczer, J. Review of recommended treatment of uterine carcinosarcoma. Curr Treat Options Oncol 2015;16(11):53Google Scholar
Berton-Rigaud, D, et al. Gynecologic Cancer InterGroup (GCIG) consensus review for uterine and ovarian carcinosarcoma. Int J Gynecol Cancer 2014;24(9 Suppl. 3):S5560.CrossRefGoogle ScholarPubMed
Lorusso, D, et al. Carboplatin-paclitaxel versus cisplatin-ifosfamide in the treatment of uterine carcinosarcoma: a retrospective cohort study. Int J Gynecol Cancer 2014;24(7):12561261.Google Scholar
Powell, MA, et al. A randomized phase 3 trial of paclitaxel (P) plus carboplatin (C) versus paclitaxel plus ifosfamide (I) in chemotherapy-naive patients with stage I–IV, persistent or recurrent carcinosarcoma of the uterus or ovary: an NRG Oncology trial. JCO 2019;37(15):5500.CrossRefGoogle Scholar

References

Powell, MA, et al. A randomized phase 3 trial of paclitaxel (P) plus carboplatin (C) versus paclitaxel plus ifosfamide (I) in chemotherapy-naive patients with s-IV, persistent or recurrent carcinosarcoma of the uterus or ovary: an NRG Oncology trial. J Clin Oncol 2022;40(9):968977.Google Scholar
Berton-Rigaud, D, et al. Gynecologic Cancer InterGroup (GCIG) consensus review for uterine and ovarian carcinosarcoma. Int J Gynecol Cancer 2014;24(9 Suppl. 3): S5560.Google Scholar
Cherniack, AD, et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell 2017;31(3):411423. https://doi.org/10.1016/j.ccell.2017.02.010Google Scholar
Zhao, S, et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2016;113(43):1223812243. https://doi.org/10.1073/pnas.1614120113Google Scholar

References

Hensley, ML, et al. Gynecologic Cancer InterGroup (GCIG) consensus review: uterine and ovarian leiomyosarcomas. Int J Gynecol Cancer 2014;9(Suppl. 3):S6166.Google Scholar
Zivanovic O, , et al. A nomogram to predict post resection 5-year overall survival for patients with uterine leiomyosarcoma. Cancer 2012;118:660669.CrossRefGoogle Scholar
Leitao, MM, et al. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer 2004;101:1455.Google Scholar
Leitao, MM, et al. O outcomes in patients with newly diagnosed uterine leiomyosarcoma. Gynecol Oncol 2012;124:558562.CrossRefGoogle Scholar
Kapp, DS, et al. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer 2008;112:820830.CrossRefGoogle ScholarPubMed
Nasioudis, D, et al. Safety of ovarian preservation in premenopausal women with stage I uterine sarcoma. J Gynecol Oncol 2017;28(4):e46.CrossRefGoogle ScholarPubMed

References

Seagle, BL, et al. Prognosis and treatment of uterine leiomyosarcoma: a National Cancer Database study. Gynecol Oncol 2017;145(1):6170.Google Scholar
Bodner, K, et al. Estrogen and progesterone receptor expression in patients with uterine smooth muscle tumors. Fertil Steril 2004;81(4):10621066.Google Scholar
Giuntoli, RL, et al. Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gynecol Oncol 2003;89(3):460469.Google Scholar
Nasioudis, D, et al. Safety of ovarian preservation in premenopausal women with stage I uterine sarcoma. J Gynecol Oncol 2017;28(4):e46. https://doi.org/10.3802/jgo.2017.28.e46Google Scholar
ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014;25(Suppl. 3):iii102–112.Google Scholar

References

Hensley, ML, et al. Adjuvant gemcitabine plus docetaxel for completely resected stages I–IV high-grade uterine leiomyosarcoma: results of a prospective study. Gynecol Oncol 2009;112:563.Google Scholar
Dinh, TA, et al. The treatment of uterine leiomyosarcoma. Results from a 10-year experience (1990–1999) at the Massachusetts General Hospital. Gynecol Oncol 2004;92:648652.Google ScholarPubMed
Leitao, MM Jr, et al. Surgical cytoreduction in patients with metastatic uterine leiomyosarcoma at the time of initial diagnosis. Gynecol Oncol 2012;125(2):409413.CrossRefGoogle ScholarPubMed
Friedman, CF, et al. Options for adjuvant therapy for uterine leiomyosarcoma. Curr Treat Options Oncol 2018;19(2):7.CrossRefGoogle ScholarPubMed
Reed, NS, et al. Phase III randomized study to evaluate the role of adjuvant pelvic radiotherapy in the treatment of uterine sarcomas stage I and II: a European Organisation for Research and Treatment of Cancer Gynaecological Cancer Group Study (protocol 55874). Eur J Cancer 2008;44:808818.Google Scholar
Burt, BM, et al. Repeated and aggressive pulmonary resections for leiomyosarcoma metastases extends survival. Ann Thorac Surg 2011;92:1207.Google Scholar

References

Francis, M, et al. Incidence and survival of gynecologic sarcomas in England. Int J Gynecol Cancer 2015;25(5):850857.Google Scholar
Kapp, DS, et al. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer 2008;112(4):820830.CrossRefGoogle ScholarPubMed
Ghirardi, V, et al. Role of surgery in gynaecological sarcomas. Oncotarget 2019;10(26):25612575.Google Scholar
Leitao, MM Jr., et al. Surgical cytoreduction in patients with metastatic uterine leiomyosarcoma at the time of initial diagnosis. Gynecol Oncol 2012;125(2):409413.Google Scholar
George, S, et al. Soft tissue and uterine leiomyosarcoma. J Clin Oncol 2018;36(2):144150.CrossRefGoogle ScholarPubMed

References

Burt, BM, et al. Repeated and aggressive pulmonary resections for leiomyosarcoma metastases extends survival. Ann Thorac Surg 2011;92:12021207.Google Scholar
Leitao, MM, et al. Surgical resection of pulmonary and extrapulmonary recurrences of uterine leiomyosarcoma, Gynecol Oncol 2002;87:287294.Google Scholar
Giuntoli, RL, et al. Secondary cytoreduction in the management of recurrent uterine leiomyosarcoma. Gynecol Oncol 2007;106:8288.CrossRefGoogle ScholarPubMed
Cybulska, P, et al. Secondary surgical resection for patients with recurrent uterine leiomyosarcoma. Gynecol Oncol 2019;154(2):333337.Google Scholar
Trans-Atlantic RPS Working Group. Management of recurrent retroperitoneal sarcoma (RPS) in the adult: a consensus approach from the Trans-Atlantic RPS Working Group. Ann Surg Oncol 2016; 23(11):35313540.Google Scholar

References

van Geel, AN, et al. Surgical treatment of lung metastases: the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group study of 255 patients. Cancer 1996;77:675682. https://doi.org/10.1002/(sici)1097-0142(19960215)77:4<675::aid-cncr13>3.3.co;2-h3.0.CO;2-Y>CrossRefGoogle Scholar
Leitao, MM, et al. Surgical resection of pulmonary and extrapulmonary recurrences of uterine leiomyosarcoma. Gynecol Oncol 2002;87:287294. https://doi.org/10.1006/gyno.2002.6840CrossRefGoogle ScholarPubMed
Hoang, HLT, et al. Prognostic factors and survival in patients treated surgically for recurrent metastatic uterine leiomyosarcoma. Int J Surg Oncol 2014;2014:919323. https://doi.org/10.1155/2014/919323Google Scholar
Bonvalot, S, et al. Randomized trial of cytoreduction followed by intraperitoneal chemotherapy versus cytoreduction alone in patients with peritoneal sarcomatosis. Eur J Surg Oncol 2005;31(8):917923. https://doi.org/10.1016/j.ejso.2005.04.010. PMID: 15975759Google Scholar
Díaz-Montes, TP, et al. Efficacy of hyperthermic intraperitoneal chemotherapy and cytoreductive surgery in the treatment of recurrent uterine sarcoma. Int J Gynecol Cancer 2018;28:11301137. https://doi.org/10.1097/IGC.0000000000001289Google Scholar
Aalders, J, et al. Postoperative external irradiation and prognostic parameters in stage I endometrial carcinoma: clinical and histopathologic study of 540 patients. Obstet Gynecol 1980;56:419427.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×