Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-vcb8f Total loading time: 0.937 Render date: 2022-09-24T20:26:33.017Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

8 - The baby who was depressed at birth

from Section III - Solving clinical problems and interpretation of test results

Published online by Cambridge University Press:  07 December 2009

Janet M. Rennie
Affiliation:
Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Cornelia F. Hagmann
Affiliation:
Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Nicola J. Robertson
Affiliation:
Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Janet M. Rennie
Affiliation:
University College London
Cornelia F. Hagmann
Affiliation:
University College London
Nicola J. Robertson
Affiliation:
University College London
Get access

Summary

Clinical presentation of birth depression

When faced with the dire emergency of a baby who is white, floppy, not breathing and whose heart is beating very slowly, the attending neonatologist cannot spend time quizzing the mother about her family history, pregnancy and labor, and nor should she. Her first priority must be to resuscitate the baby along the usual lines, remembering that a baby who does not respond may have lost blood, be suffering from overwhelming sepsis, have endured a period of hypoxic ischemia, or have a myopathy or spinal cord damage. The one investigation that must be requested in the heat of the battle is a cord pH, preferably from both an umbilical artery and the vein. These results will be invaluable in a later analysis of the case, and in an emergency a double-clamped section of cord can be kept on one side and analyzed up to 60 min later without invalidating the result [1]. Normal scalp and cord blood pH values are given in Table 8.1. The most common cause of birth depression at term is hypoxic ischemia sustained during labor, and in preterm babies the most common cause is respiratory distress syndrome (RDS). Other causes are listed in Table 8.2, and sepsis is an important possibility.

Investigation of the baby with birth depression

Once the baby's condition is stable there will be time to gather more information.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, L, Stenson, B. Effect of delayed sampling on umbilical cord arterial and venous lactate and blood gases in clamped and unclamped vessels. Arch Dis Child Fetal Neonatal Ed 2006; 91 (5): 342–5.CrossRefGoogle ScholarPubMed
Yeomans, ER, Hauth, JC, Gilstrap, LC, Strickland, DM. Umbilical cord pH, PCO2, and bicarbonate following uncomplicated term vaginal deliveries. Am J Obstet Gynecol 1985; 151: 798–800.CrossRefGoogle ScholarPubMed
Boylan PC. In Creasy, RKet al. (eds) Maternal–Fetal Medicine. Philadelphia, Saunders, 1999.Google Scholar
Eskes, TKAB, Jongsma, HW, Houx, PCW. Percentiles for gas values in human umbilical cord blood. European J Obstet Gynaecol Reprod Med 1983; 14: 341–6.CrossRefGoogle ScholarPubMed
Nelson, KB, Dambrosia, JM, Ting, TY, Grether, JK. Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 1996; 334: 613–18.CrossRefGoogle ScholarPubMed
Parer, JT, King, T. Fetal heart rate monitoring: is it salvageable? Am J Obstet Gynecol 2000; 182: 982–7.CrossRefGoogle ScholarPubMed
Phelan, JP, Ahn, MO. Perinatal observations in forty-eight neurologically impaired term infants. Am J Obstet Gynecol 1994; 171: 424–31.CrossRefGoogle ScholarPubMed
Schifrin, BS. The CTG and the timing and mechanism of fetal neurological injuries. Best Pract Res Clin Obstet Gynaecol 2004; 18 (3): 437–56.CrossRefGoogle ScholarPubMed
Grether, JK, Nelson, KB. Maternal infection and cerebral palsy in infants of normal birth weight. J Am Med Assoc 1997; 278: 207–11.CrossRefGoogle ScholarPubMed
Nelson, KB, Dambrosia, JM, Grether, JK, Phillips, TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 1998; 44: 665–75.CrossRefGoogle ScholarPubMed
Badawi, N, Kurinczuk, JJ, Keogh, JM, Alessandri, LM, O'Sullivan, F, Burton, PR. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. Br Med J 1998; 317: 1554–8.CrossRefGoogle ScholarPubMed
Lieberman, E, Eichenwald, E, Mathur, G, Richardson, D, Heffner, L, Cohen, A. Intrapartum fever and unexplained seizures in term infants. Pediatrics 2000; 106: 983–8.CrossRefGoogle ScholarPubMed
Impey, L, Greenwood, C, MacQuillan, K, Reynolds, M, Sheiel, O. Fever in labour and neonatal encephalopathy: a prospective cohort study. Br J Obstet Gynaecol 2001; 108: 594–7.Google ScholarPubMed
Eklind, S, Mallard, C, Leverin, A-Let al. Bacterial endotoxin sensitizes the imature brain to hypoxic-ischaemic injury. Eur J Neurosci 2001; 13: 1101–6.CrossRefGoogle Scholar
Tomimatsu, T, Fukuda, H, Kanagawa, T, Mu, J, Kanzaki, T, Murata, Y. Effects of hyperthermia on hypoxic ischaemic brain damage in the immature rat: its influence on caspase-3-like protease. Am J Obstet Gynaecol 2003; 188 (3): 768–73.CrossRefGoogle ScholarPubMed
Spellacy, WN, Gravem, H, Fisch, RO. The umbical cord complications of true knots, nuchal coils, and cords around the body. Am J Obstet Gynecol 1966; 94: 1136–42.CrossRefGoogle Scholar
Thompson, CM, Puterman, AS, Linley, LLet al. The value of a scoring system for hypoxic ischemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr Scand 1997; 86: 757–61.CrossRefGoogle ScholarPubMed
Mercuri, E, Guzzetta, A, Haataja, Let al. Neonatal neurological examination in infants with hypoxic ischaemic encephalopathy: correlation with MRI findings. Neuropediatrics 1999; 30: 83–9.CrossRefGoogle ScholarPubMed
Williams, CE, Gunn, AJ, Mallard, C, Gluckman, PD. Outcome after ischemia in the developing sheep brain: an electroencephalographic and histological study. Ann Neurol 1992; 31: 14–21.CrossRefGoogle ScholarPubMed
Filan, P, Boylan, GB, Chorley, Get al. The relationship between the onset of electrographic seizure activity after birth and the time of cerebral injury in utero. Br J Obstet Gynaecol 2005; 112: 504–7.CrossRefGoogle ScholarPubMed
Rooij, LGM, Toet, MC, Osredkar, D, Huffelen, AC, Groenendaal, F, Vries, LS. Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child 2005; 90 (3): F245–F251.CrossRefGoogle ScholarPubMed
Staudt, F, Scholl, ML, Coen, RW, Bickford, RB. Phenobarbital therapy in neonatal seizures and the prognostic value of the EEG. Neuropediatrics 1982; 13: 24–33.CrossRefGoogle ScholarPubMed
Leijser, LM, Vries, LS, Cowan, FM. Using cerebral ultrasound effectively in the newborn infant. Early Hum Dev 2006; 82 (12): 827–35.CrossRefGoogle ScholarPubMed
Archer, N, Levene, MI, Evans, DH. Cerebral artery doppler ultrasound for prediction of outcome after perinatal asphyxia. Lancet 1986; ii: 1116–18.CrossRefGoogle Scholar
Levene, MI, Fenton, A, Evans, DH, Archer, N, Shortland, D, Gibson, NA. Severe birth asphyxia and abnormal cerebral blood flow velocity. Dev Med Child Neurol 1989; 31: 427–34.CrossRefGoogle ScholarPubMed
Eken, P, Toet, MC, Groenendaal, F, Vries, LS. Predictive value of early neuroimaging, pulsed doppler and neurophysiology in full term infants with hypoxic ischaemic encephalopathy. Arch Dis Child 1995; 73: F75–F81.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Hajnal, BL, Vigneron, Det al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. Am J Neuroradiol 1998; 19: 143–9.Google ScholarPubMed
Cowan, F. Outcome after intrapartum asphyxia in term infants. Semin Neonatol 2000; 5 (2): 127–40.CrossRefGoogle ScholarPubMed
Ment, LR, Bada, HS, Barnes, Pet al. Practice parameter: neuroimaging of the neonate. Report of the quality standards subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002; 58: 1726–38.CrossRefGoogle ScholarPubMed
Miller, SP, Ramaswamy, V, Michelson, Det al. Patterns of brain injury in term neonatal encephalopathy. J Paediatr 2005; 146: 453–60.CrossRefGoogle ScholarPubMed
Sie, LTL, Knaap, MS, Oosting, J, Vries, LS, Lafeber, HN, Valk, J. MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 2000; 31: 128–36.CrossRefGoogle ScholarPubMed
Leviton, A, Nelson, KB. Problems with definitions and classifications of newborn encephalopathy. Pediatr Neurol 1992; 8: 85–90.CrossRefGoogle ScholarPubMed
Marlow, N, Budge, H. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy. Arch Dis Child 2005; 90 (3): 193–4.CrossRefGoogle ScholarPubMed
Evans, K, Rigby, AS, Hamilton, P, Titchiner, N, Hall, DMB. The relationships between neonatal encephalopathy and cerebral palsy: a cohort study. J Obstet Gynaecol 2001; 21 (2): 114–20.CrossRefGoogle ScholarPubMed
Levene, MI, Kornberg, J, Williams, THC. The incidence and severity of post-asphyxial encephalopathy in full term infants. Early Hum Dev 1985; 11: 21–6.CrossRefGoogle ScholarPubMed
Adamson, SJ, Alessandri, LM, Badawi, N, Burton, PR, Pemburton, PJ, Stanley, F. Predictors of neonatal encephalopathy in full term infants. Br Med J 1995; 311: 598–602.CrossRefGoogle ScholarPubMed
Hull, J, Dodd, KL. Falling incidence of hypoxic ischaemic encephalopathy in term infants. Br J Obstet Gynaecol 1992; 99: 386–91.CrossRefGoogle ScholarPubMed
Pierrat, V, Haouari, N, Liska, A, Thomas, D, Subtil, D, Truffert, P. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy: population based study. Arch Dis Child 2005; 90 (3): 257–61.CrossRefGoogle ScholarPubMed
Ellis, M, Manandhar, N, Manandhar, DS, , LCostello, AM. Risk factors for neonatal encephalopathy in Kathmandu, Nepal, a developing country: unmatched case-control study. Br Med J 2000; 320: 1229–36.CrossRefGoogle ScholarPubMed
Badawi, N, Kurinczuk, JJ, Keogh, JMet al. Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. Br Med J 1998; 317: 1549–53.CrossRefGoogle ScholarPubMed
Badawi, N, Kurinczuk, JJ, Mackenzie, CLet al. Maternal thyroid disease: a risk factor for newborn encephalopathy in term infants. Br J Obstet Gynaecol 2000; 107: 798–801.CrossRefGoogle ScholarPubMed
Stanley, F, Blair, E. Cerebral Palsy – Epidemiology and Causal Pathways, 1st edn. Cambridge: MacKeith Press; 2000.Google Scholar
Himmelmann, K, Hagberg, G, Beckung, E, Hagberg, B, Uvebrant, P. The changing panorama of cerebral palsy in Sweden. ix. Prevalence and origin in the birth-year period 1995–1998. Acta Paediatr 2005; 94: 287–94.CrossRefGoogle ScholarPubMed
Hagberg, B, Hagberg, G, Beckung, E, Uvebrant, P. Changing panorama of cerebral palsy in Sweden. viii. Prevalence and origin in the birth year period 1991–1994. Acta Paediatr 2001; 90: 271–7.CrossRefGoogle Scholar
Himmelmann, K, Hagberg, G, Wiklund, LM, Eek, MN, Uvebrant, P. Dyskinetic cerebral palsy: a population-based study of children born between 1993 and 1998. Dev Med Child Neurol 2007; 49: 246–51.CrossRefGoogle Scholar
Cowan, F, Rutherford, M, Groenendaal, Fet al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003; 361: 736–42.CrossRefGoogle ScholarPubMed
Myers, RE. Two patterns of perinatal brain damage and their conditions of occurrence. Am J Obstet Gynecol 1972; 112: 246–76.CrossRefGoogle Scholar
Gluckman, PD. When and why do brain cells die? Dev Med Child Neurol 1992; 34: 1010–21.CrossRefGoogle ScholarPubMed
Lorek, A, Takei, Y, Cady, EBet al. Delayed (‘secondary’) cerebral energy failure after acute hypoxia-ischaemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994; 36: 699–706.CrossRefGoogle Scholar
Derrick, M, Drobyshevsky, A, Ji, X, Tan, S. A model of cerebral palsy from fetal hypoxia-ischemia. Stroke 2007; 38: 731–5.CrossRefGoogle ScholarPubMed
Westgate JA, Bennet L, Gunn AJ. Intrapartum hypoxic-ischaemic brain injury. In: Donn, SM, Sinha, SK, Chiswick, ML, eds. Birth Asphyxia and the Brain: Basic Science and Clinical Implications. New York, Futura, 2002; 243–79.Google Scholar
Johnston, MV, Trescher, WH, Ishida, A, Nakajima, W. Neurobiology of hypoxic-ischaemic injury in the developing brain. Pediatr Res 2001; 49: 735–41.CrossRefGoogle Scholar
Mallard, EC, Williams, CE, Gunn, AJ, Gunning, MI, Gluckman, PD. Frequent episodes of brief ischemia sensitize the fetal sheep brain to neuronal loss and induce striatal injury. Pediatr Res 1993; 33: 61–5.CrossRefGoogle ScholarPubMed
Mallard, EC, Williams, CE, Johnston, BM, Gunning, MI, Davis, S, Gluckman, PD. Repeated episodes of umbilical cord occlusion in fetal sheep lead to preferential damage to the striatum and sensitize the heart to further insults. Pediatr Res 1995; 37: 707–13.CrossRefGoogle ScholarPubMed
Mallard, EC, Waldvogel, HJ, Williams, CE, Faull, RLM, Gluckman, PD. Repeated asphyxia causes loss of striatal projection neurons in the fetal sheep brain. Neuroscience 1995; 65: 827–36.CrossRefGoogle ScholarPubMed
Thoresen, M, Wyatt, J. Keeping a cool head, post-hypoxic hypothermia – an old idea revisited. Acta Paediatr 1997; 86: 1029–33.CrossRefGoogle Scholar
Iwata, O, Iwata, S, Thornton, JSet al. “Therapeutic time window” duration decreases with increasing severity of cerebral hypoxia-ischaemia under normothermia and delayed hypothermia in newborn piglets. Brain Res 2007; 1154: 173–80.CrossRefGoogle ScholarPubMed
Gluckman, PD, Wyatt, JS, Azzopardi, Det al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005; 365: 663–70.CrossRefGoogle ScholarPubMed
Myers, RE. Four patterns of perinatal brain damage and their occurrence in primates. Adv Neurol 1975; 10: 223–4.Google ScholarPubMed
Roland, EH, Poskitt, K, Rodriguez, E, Lupton, BA, Hill, A. Perinatal hypoxic-ischemic thalamic injury: clinical features and neuroimaging. Ann Neurol 1998; 44: 161–6.CrossRefGoogle ScholarPubMed
Pasternak, JF, Gorey, MT. The syndrome of acute near-total intrauterine asphyxia in the term infant. Pediatr Neurol 1998; 18: 391–8.CrossRefGoogle ScholarPubMed
Okumura, A, Hayakawa, F, Kato, T, Kuno, K, Watanabe, K. Bilateral basal ganglia-thalamic lesions subsequent to prolonged fetal bradycardia. Early Hum Dev 2000; 58: 111–18.CrossRefGoogle ScholarPubMed
Natsume, J, Watanabe, K, Kuno, K, Hayakawa, F, Hashizume, Y. Clinical, neurophysiologic, and neuropathological features of an infant with brain damage of total asphyxia type (Myers). Pediatr Neurol 1995; 13: 61–4.CrossRefGoogle Scholar
Krageloh-Mann, I, Helber, A, Mader, Iet al. Bilateral lesions of thalamus and basal ganglia: origin and outcome. Dev Med Child Neurol 2002; 44: 477–84.CrossRefGoogle ScholarPubMed
Naeye, RL, Lin, H-M. Determination of the timing of fetal brain damage from hypoxemia-ischaemia. Am J Obstet Gynecol 2001; 184: 217–24.CrossRefGoogle Scholar
Bennet L, Westgate JA, Gluckman PD, Gunn AJ. Pathophysiology of asphyxia. In: Levene, MI, Chervenak, FA, Whittle, M, eds. Fetal and Neonatal Neurology and Neurosurgery, 3rd edn. London, Churchill Livingstone, 2001; 407–26.Google Scholar
Bobrow, CS, Soothill, P. Causes and consequences of fetal acidosis. Arch Dis Child 1999; 80: F246–F249.CrossRefGoogle ScholarPubMed
Brann, AW, Myers, RE. Central nervous system findings in the newborn monkey following severe in utero partial asphyxia. Neurology 1975; 25: 327–38.CrossRefGoogle ScholarPubMed
Ikeda, T, Murata, Y, Quilligan, EJet al. Physiologic and histologic changes in near-term fetal lambs exposed to asphyxia by partial umbilical cord occlusion. Am J Obstet Gynecol 1998; 178: 24–32.CrossRefGoogle ScholarPubMed
Gunn, AJ, Parer, JT, Mallard, EC, Williams, CE, Gluckman, PD. Cerebral histologic and electrophysiologic changes after asphyxia in fetal sheep. Pediatr Res 1992; 31: 486–91.CrossRefGoogle ScholarPubMed
Haan, HH, Gunn, AJ, Williams, CE, Gluckman, PD. Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr Res 1997; 41: 96–104.CrossRefGoogle ScholarPubMed
Ball, RH, Parer, JT, Caldwell, , Johnson, J. Regional blood flow and metabolism in ovine fetuses during severe cord occlusion. Am J Obstet Gynecol 1994; 171: 1549–55.CrossRefGoogle ScholarPubMed
Connolly, DJA, Widjaja, E, Griffiths, PD. Involvement of the anterior lobe of the cerebellar vermis in perinatal profound hypoxia. Am J Neuroradiol 2007; 28 (1): 16–19.Google ScholarPubMed
Sargent, MA, Poskitt, KJ, Roland, EH, Hill, A, Hendson, G. Cerebellar vermian atrophy after neonatal hypoxic ischaemic encephalopathy. Am J Neuroradiol 2004; 25: 1008–15.Google Scholar
McDonald, JW, Johnston, MV. Physiological and pathophysiological roles of excitatory amino acids during CNS development. Brain Res 1990; 15: 41–70.CrossRefGoogle Scholar
Brown, GC, Bal-Price, A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 2003; 27: 325–55.CrossRefGoogle Scholar
Northington, FJ, Ferriero, DM, Graham, EM, Traystman, RJ, Martin, LJ. Early neurodegeneration after hypoxic ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 2001; 8 (2): 201–19.CrossRefGoogle ScholarPubMed
Orrenius, S, Zhivotovsky, B, Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nature Rev Mol Cell Biol 2003; 4 (7): 552–65.CrossRefGoogle ScholarPubMed
Taylor, DL, Edwards, AD, Mehmet, H. Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 1999; 9 (1): 93–117.CrossRefGoogle ScholarPubMed
Volpe, JJ, Pasternak, JF. Parasagittal cerebral injury in neonatal hypoxic-ischaemic encephalopathy. J Pediatr 1977; 91: 472–6.CrossRefGoogle Scholar
Williams, CE, Gunn, AJ, Mallard, C, Gluckman, PD. Outcome after ischemia in the developing sheep brain: an electroencephalographic and histological study. Ann Neurol 1992; 31 (1): 14–21.CrossRefGoogle ScholarPubMed
Sarnat, HB, Sarnat, MS. Neonatal encephalopathy following fetal distress. Arch Neurol 1976; 33: 696–705.CrossRefGoogle ScholarPubMed
Levene, MI, Sands, C, Grindulis, H, Moore, JR. Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1986; i: 67–8.CrossRefGoogle Scholar
Miller, SP, Latal, B, Clark, Het al. Clinical signs predict 30-month neurodevelopmental outcome after neonatal encephalopathy. Am J Obstet Gynaecol 2004; 190: 93–9.CrossRefGoogle ScholarPubMed
Robertson, CMT, Finer, NN. Long term follow up of term neonates with birth asphyxia. Clin Perinatol 1993; 20: 483–500.CrossRefGoogle Scholar
Rosenbloom, L. Dyskinetic cerebral palsy and birth asphyxia. Dev Med Child Neurol 1994; 36: 285–9.CrossRefGoogle ScholarPubMed
Perlman, JM, Tack, ED. Renal injury in the asphyxiated newborn: relationship to neurologic outcome. J Pediatr 1988; 113: 875–9.CrossRefGoogle ScholarPubMed
Shah, P, Riphagen, S, Beyene, J, Perlman, M. Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatol Ed 2004; 89: F152–F155.CrossRefGoogle ScholarPubMed
Williams, CE, Gunn, AJ, Synek, B, Gluckman, PD. Delayed seizures occurring with hypoxic-ischemic encephalopathy in the fetal sheep. Pediatr Res 1990; 27 (6): 561–5.CrossRefGoogle ScholarPubMed
Williams, CE, Gunn, A, Gluckman, PD. Time course of intracellular oedema and epileptiform activity following prenatal cerebral ischaemia in sheep. Stroke 1991; 22: 516–21.CrossRefGoogle Scholar
McBride, MC, Laroia, N, Guillet, R. Electrographic seizures in neonates correlate with poor neurodevelopmental outcome. Neurology 2000; 55: 506–13.CrossRefGoogle ScholarPubMed
Bye, AME, Cunningham, CA, Chee, KY, Flanagan, D. Outcome of neonates with electro-graphically identified seizures, or at risk of seizures. Pediatr Neurol 1997; 16: 225–31.CrossRefGoogle ScholarPubMed
Pressler, RM, Boylan, GB, Morton, M, Binnie, CD, Rennie, JM. Early serial EEG in hypoxic ischaemic encephalopathy. Clin Neurophysiol 2001; 112: 31–7.CrossRefGoogle ScholarPubMed
Selton, D, Andre, M. Prognosis of hypoxic-ischaemic encephalopathy in full-term newborns – value of neonatal electroencephalography. Neuropediatrics 1997; 28: 276–80.CrossRefGoogle ScholarPubMed
Harris, R, Tizard, JPM. EEG in neonatal convulsions. J Pediatr 1960; 57: 510–14.CrossRefGoogle ScholarPubMed
Rose, A, Lombroso, CT. Neonatal seizure states: a study of clinical, pathological, and electroencephalographic features in 137 full-term babies with a long-term follow-up. Pediatrics 1970; 45: 404–25.Google Scholar
Lieshout, HBM, Jacobs, JFM, Rotteveel, JJ, Geven, W, dort Hoeffmann, M. The prognostic value of the EEG in asphyxiated newborns. Acta Neurol Scand 1995; 91: 203–7.CrossRefGoogle ScholarPubMed
Takeuchi, T, Watanabe, K. The EEG evolution and neurological prognosis of perinatal hypoxia neonates. Brain Dev 1989; 11: 115–20.CrossRefGoogle ScholarPubMed
Watanabe, K, Miyazaki, S, Hara, K, Hakamanda, A. Behavioral state cycles, background EEGs and prognosis of newborn with perinatal hypoxia. Electroencephalogr Clin Neurophysiol 1980; 49: 618–25.CrossRefGoogle ScholarPubMed
Wertheim, D, Mercuri, E, Faundez, JC, Rutherford, M, Acolet, D, Dubowitz, L. Prognostic value of continuous electroencephalographic recording in full term infants with hypoxic ischaemic encephalopathy. Arch Dis Child 1994; 71: F97–F102.CrossRefGoogle ScholarPubMed
Vries, LS, Hellstrom-Westas, L. Role of cerebral function monitoring in the newborn. Arch Dis Child 2005; 90 (3): 201–7.CrossRefGoogle ScholarPubMed
Holmes, GL, Lombroso, CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol 1993; 10 (3): 323–52.CrossRefGoogle ScholarPubMed
Aso, K, Scher, MS, Barmada, MA. Neonatal electroencephalography and neuropathology. J Clin Neurophysiol 1989; 6: 103–23.CrossRefGoogle ScholarPubMed
Monod, N, Pajot, N, Guidasci, S. The neonatal EEG: statistical studies and prognostic value in full term and preterm babies. Electroencephalogr Clin Neurophysiol 1972; 32: 529–44.CrossRefGoogle Scholar
Holmes, G, Rowe, J, Schmidt, R, Testa, M, Zimmerman, A. Prognostic value of the electroencephalogram in neonatal seizures. Electroencephalogr Clin Neurophysiol 1982; 53: 60–72.CrossRefGoogle Scholar
Pezzani, C, Radvani-Bouvet, MF, Relier, JP, Monod, N. Neonatal electroencephalography during the first 24 hours of life in full term newborn infants. Neuropediatrics 1986; 17: 11–18.CrossRefGoogle ScholarPubMed
Grigg-Damberger, MM, Coker, SB, Halsey, CL, Anderson, CL. Neonatal burst supression: its developmental significance. Pediatr Neurol 1989; 5: 84–92.CrossRefGoogle Scholar
Peliowski A, Finer NN. Asphyxia in the term infant. In: Sinclair, JC, Bracken, MB, eds. Effective Care of the Newborn Infant 1st edn. Oxford, Oxford University Press, 1992; 249–79.Google Scholar
Tharp, BR. Neonatal seizures and syndromes. Epilepsia 2002; 43 (3): 2–10.CrossRefGoogle ScholarPubMed
Biagioni, E, Mercuri, E, Rutherford, Met al. Combined use of electroencephalogram and magnetic resonance imaging in full-term neonates with acute encephalopathy. Pediatrics 2001; 107: 461–8.CrossRefGoogle ScholarPubMed
al Naqeeb, N, Edwards, AD, Cowan, F, Azzopardi, D. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics 1999; 103: 1263–71.CrossRefGoogle ScholarPubMed
Toet, MC, Meij, W, Vries, LS, Uiterwaal, CPM, Huffelen, KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electrocephalogram in neonates. Pediatrics 2002; 109: 772–9.CrossRefGoogle Scholar
Hellström-Westas, L, Rosen, I, Svenningsen, NW. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child 1995; 72: F34–F38.CrossRefGoogle ScholarPubMed
Toet, MG, Hellstrom-Westas, L, Groenendaal, F, Eken, P, Vries, LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child 1999; 81: F19–F23.CrossRefGoogle ScholarPubMed
Thornberg, E, Ekstrom-Jodal, B. Cerebral function monitoring: a method of predicting outcome in term neonates after severe perinatal asphyxia. Acta Paediatr Scand 1994; 83: 596–601.CrossRefGoogle ScholarPubMed
Horst, HJ, Sommer, C, Bergman, KA, Fock, JM, Weerden, TW, Bos, AF. Prognostic significance of amplitude-integrated EEG during the first 72 hours after birth in severely asphyxiated neonates. Pediatr Res 2004; 55: 1026–33.CrossRefGoogle ScholarPubMed
Toet, MC, Lemmers, PMA, Schelven, LJ, Bel, F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 2006; 17 (2): 333–9.CrossRefGoogle Scholar
Rooij, LG, Toet, MC, Osredkar, D, Heffelen, AC, Groenendaal, F, Vries, LS. Recovery of amplitude integrated electroencephalo-graphic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2005; 90 (3): F245–51.CrossRefGoogle Scholar
Horst, HJ, Brouwer, OF, Bos, AF. Burst suppression on amplitude-integrated electroencephalogram may be induced by midazolam: a report on three cases. Actra Paediatr Scand 2004; 93: 559–64.CrossRefGoogle ScholarPubMed
Verma, UL, Archbald, F, Tejani, NA, Handwerker, SM. Cerebral function monitor in the neonate. I: normal patterns. Dev Med Child Neurol 1984; 26: 154–61.CrossRefGoogle ScholarPubMed
Osredkar, D, Toet, MC, Rooji, LGM, Huffelen, AC, Groenendaal, F, Vries, L. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 2005; 115 (2): 327–32.CrossRefGoogle ScholarPubMed
Hagmann, CF, Robertson, NJ, Azzopardi, D. Artifacts on electroencephalograms may influence the amplitude-integrated EEG classification: a qualitiative analysis in neonatal encephalopathy. Pediatr Experience Reason 2006; 118 (6): 2552–4.Google Scholar
Hellström-Westas, L, Rosen, I, Vries, LS, Greisen, G. Amplitude-integrated EEG classification and interpretation in preterm and term infants. Neoreviews 2006; 7 (2): E76–E87.CrossRefGoogle Scholar
Sheehy-Skeffington, F, Pearce, RG. The “bright brain”. Arch Dis Child 1983; 58: 509–11.CrossRefGoogle Scholar
Shen, E-Y, Hunag, CC, Chyou, SC, Hung, HY, Hsu, CH, Hunag, FY. Sonographic findings of the bright thalamus. Arch Dis Child 1986; 61: 1096–9.CrossRefGoogle ScholarPubMed
Voit, T, Lemburg, P, Neve, E, Lumenta, C, Stork, W. Damage of thalamus and basal ganglia in asphyxiated full term neonates. Neuropediatrics 1987; 18: 176–81.CrossRefGoogle ScholarPubMed
Connolly, B, Kelehan, P, O'Brien, NOet al. The echogenic thalamus in hypoxic-ischaemic encephalopathy. Pediatr Radiol 1994; 24: 268–71.CrossRefGoogle ScholarPubMed
Rutherford, MA, Pennock, JM, Dubowitz, LMS. Cranial ultrasound and magnetic resonance imaging in hypoxic ischaemic encephalopathy: a comparison with outcome. Dev Med Child Neurol 1994; 36: 813–25.CrossRefGoogle ScholarPubMed
Leijser, LM, Cowan, FM. State-of-the-art neonatal cranial ultrasound. Ultrasound 2007; 15 (1): 6–17.CrossRefGoogle Scholar
Eken, P, Jansen, GH, Groenendaal, F, Rademaker, KJ, Vries, LS. Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatrics 1994; 25: 301–7.CrossRefGoogle ScholarPubMed
Siegel, MJ, Shackleford, GD, Perlman, JM, Fulling, KH. Hypoxic ischaemic encephalopathy in term infants: diagnosis and prognosis evaluated by ultrasound. Radiology 1984; 152: 395–9.CrossRefGoogle ScholarPubMed
Galli, KK, Zimmerman, RA, Jarvik, GPet al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004; 127: 692–704.CrossRefGoogle ScholarPubMed
McQuillen, PS, Barkovich, AJ, Hamrick, SEGet al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 2007; 38: 736–41.CrossRefGoogle ScholarPubMed
Bel, F, Bor, M, Stijnen, T, Baan, J, Ruys, JH. Cerebral blood flow velocity patterns in healthy and asphyxiated newborns: a controlled study. Eur J Pediatr 1987; 146: 461–57.Google Scholar
Rennie, JM, South, M, Morley, CJ. Cerebral blood flow velocity variability in infants receiving assisted ventilation. Arch Dis Child 1987; 62: 1247–51.CrossRefGoogle ScholarPubMed
Boylan, G, Young, K, Panerai, RB, Rennie, JM, Evans, DH. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res 2000; 48: 12–17.CrossRefGoogle ScholarPubMed
McMenamin, JB, Volpe, JJ. Doppler ultrasonography in the determination of neonatal brain death. Arch Neurol 1983; 14: 302–6.Google ScholarPubMed
Glasier, CM, Seibert, JJ, Chadduck, WM, Williamson, SL, Leithiser, RE. Brain death in infants: evaluation with Doppler US. Radiology 1989; 172: 377–80.CrossRefGoogle ScholarPubMed
Hassler, W, Steinmetz, H, Gawlowski, J. Transcranial doppler ultrasonography in raised ICP and in intracranial circulatory arrest. J Neurosurg 1988; 68: 745–51.Google Scholar
Kirkham, FJ, Levin, SD, Padayachee, TS, Kyme, MC, Neville, BGR, Gosling, RG. Transcranial pulsed Doppler findings in brain stem death. J Neurol Neurosurg Psychiatry 1987; 50: 1504–13.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Truwit, CL. Brain damage from perinatal asphyxia: correlation of MR findings with gestational age. Am J Neuroradiol 1990; 11: 1087–96.Google ScholarPubMed
Barkovich, AJ. MR and CT evaluation of profound neonatal and infantile asphyxia. Am J Neuroradiol 1992; 13: 959–72.Google ScholarPubMed
Barkovich, AJ, Westmark, K, Partridge, A, Sola, A, Ferriero, DM. Perinatal asphyxia: MR findings in the first 10 days. Am J Neuroradiol 1995; 16: 427–38.Google ScholarPubMed
Baenziger, O, Martin, E, Steinlin, Met al. Early pattern recognition in severe perinatal asphyxia; a prospective MR study. Neuroradiology 1993; 35: 437–42.CrossRefGoogle Scholar
Kuenzle, CL, Baenziger, O, Martin, Eet al. Prognostic value of early MR imaging in term infants with severe perinatal asphyxia. Neuropediatrics 1994; 25: 191–200.CrossRefGoogle Scholar
Byrne, P, Welch, R, Johnson, MA, Darrah, J, Piper, M. Serial magnetic resonance imaging in neonatal hypoxic ischaemic encephalopathy. J Pediatr 1990; 117: 694–700.CrossRefGoogle Scholar
Truwit, CL, Barkovich, AJ, Koch, TK, Ferriero, DM. Cerebral palsy: MRI findings. Am J Neuroradiol 1992; 13: 67–78.Google Scholar
Steinlin, M, Dirr, R, Martin, Eet al. MRI following severe perinatal asphyxia: preliminary experience. Pediatr Neurol 1991; 7: 164–70.CrossRefGoogle ScholarPubMed
Keeney, SE, Adcock, EW, McArdle, CB. Prospective observations of 100 high-risk neonates in high field (1.5 tesla) magnetic resonance imaging of the central nervous system. II. Lesions associated with hypoxic-ischemic encephalopathy. Pediatrics 1991; 87: 431–8.Google ScholarPubMed
Rutherford, MA, Pennock, JM, Schweiso, JE, Cowan, FM, Dubowitz, LMS. Hypoxic ischaemic encephalopathy: early magnetic resonance image findings and their evolution. Neuropediatrics 1995; 26: 183–91.CrossRefGoogle Scholar
Rutherford, M, Pennock, J, Schwieso, J, Cowan, F, Dubowitz, L. Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child 1996; 75: F145–F151.CrossRefGoogle Scholar
Barkovich, AJ, Miller, SP, Bartha, Aet al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. Am J Neuroradiol 2006; 27: 533–47.Google ScholarPubMed
Rutherford M. Neuroimaging of hypoxic-ischaemic encephalopathy. In: Donn, SM, Sinha, SK, Chiswick, ML, eds. Birth Asphyxia and the Brain: Basic Science and Clinical Implications. New York, Futura, 2002; 315–54.Google Scholar
Rutherford MA. The asphyxiated term infant. In: Rutherford, MA, ed. MRI of the Neonatal Brain, 1st edn. London, W.B.Saunders, 2002; 99–128.Google Scholar
Jouvet, P, Cowan, FM, Cox, Pet al. Reproducibility and accuracy of MR imaging of the brain after severe birth asphyxia. Ame J Neuroradiol 1999; 20: 1343–8.Google ScholarPubMed
Robertson, NJ, Wyatt, JS. The magnetic resonance revolution in brain imaging: impact on neonatal intensive care. Arch Dis Child 2004; 89 (3): 193–7.CrossRefGoogle ScholarPubMed
Barkovich, AJ. MR imaging of the neonatal brain. Neuroimag Clin North Am 2006; 16: 117–35.CrossRefGoogle ScholarPubMed
Frigieri, G, Guidi, B, Zaccarelli, SCet al. Multicystic encephalomalacia in term infants. Child Nerv Syst 1996; 12: 759–64.CrossRefGoogle ScholarPubMed
Weidenheim, KM, Bodhireddy, SR, Nuovo, GJ, Nelson, SJ, Dickson, DW. Multicystic encephalopathy: revivew of eight cases with etiologic considerations. J Neuropathol Exp Neurol 1995; 54: 268–75.CrossRefGoogle Scholar
Rademakers, RP, Knaap, MS, Verbeeten, B, Barth, PG, Valk, J. Central cortico-subcortical involvement. a distinct pattern of brain damage caused by perinatal and postnatal asphyxia in term infants. J Comput Assist Tomogr 1995; 19: 256–63.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Sargent, SK. Profound asphyxia in the premature infant: imaging findings. Am J Neuroradiol 1995; 16: 1837–46.Google ScholarPubMed
Marlow, N, Rose, AS, Rands, CE, Draper, ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child 2005; 90 (5): 380–7.CrossRefGoogle ScholarPubMed
Barnett, A, Mercuri, E, Rutherford, Met al. Neurological and perceptual-motor outcomes at 5–6 years of age in children wtih neonatal encephalopathy: relationship with neonatal MRI. Neuropaediatrics 2002; 33: 242–8.CrossRefGoogle Scholar
Childs, A-M, Cornette, L, Ramenghi, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 2001; 56: 647–55.CrossRefGoogle ScholarPubMed
Konishi, Y, Kuriyama, M, Hayakawa, Ket al. Periventricular hyperintensity detected by magnetic resonance imaging in Infancy. Pediatr Neurol 1990; 6: 229–32.CrossRefGoogle ScholarPubMed
Muir, KW, Buchan, A, Kummer, R, Rother, J, Baron, JC. Imaging of acute stroke. Lancet Neurol 2006; 5 (9): 755–68.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Westmark, KD, Bedi, HS, Partridge, JC, Ferriero, DM, Vigneron, DB. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. Am J Neuroradiol 2001; 22: 1786–94.Google ScholarPubMed
Thornton, JS, Ordridge, RJ, Penrice, Jet al. Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral hypoxic-ischemic injury: relationships to cerebral energy metabolism. Magn Reson Med 1998; 39 (6): 920–7.CrossRefGoogle ScholarPubMed
Neumann-Haefelin, T, Kastrup, A, Crespigny, MA, Yenari, T, Ringer, GH. Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 2000; 31: 1311–17.CrossRefGoogle ScholarPubMed
Soul, JS, Robertson, RL, Tzika, AA, du Plessis, AJ, Volpe, JJ. Time course of changes in diffusion-weighted magnetic resonance imaging in a case of neonatal encephalopathy with defined onset and duration of hypoxic-ischemic insult. Paediatrics 2001; 108: 1211–14.CrossRefGoogle Scholar
Neil, JJ, Shiran, SI, McKinstry, RCet al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998; 209 (1): 57–66.CrossRefGoogle ScholarPubMed
Zarifi, MK, Astrakas, LG, Poussaint, TY, Plessis, AA, Zurakowski, D, Tzika, AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 2002; 225 (3): 859–70.CrossRefGoogle ScholarPubMed
McKinstry, RC, Miller, JH, Snyder, AZet al. A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 2002; 59: 824–33.CrossRefGoogle ScholarPubMed
Robertson, RL, Ben-Sira, L, Barnes, PDet al. MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. Am J Neuroradiol 1999; 20: 1658–70.Google ScholarPubMed
Forbes, KPN, Pipe, JG, Bird, R. Neonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging. Am J Neuroradiol 2000; 21: 1490–6.Google ScholarPubMed
Hunt, RW, Neil, JJ, Coleman, LT, Kean, MJ, Inder, TE. Apparent diffusion coefficient in the posterior limb of the internal capsule predicts outcome after perinatal asphyxia. Pediatrics 2004; 114 (4): 999–1003.CrossRefGoogle ScholarPubMed
Rutherford, M, Counsell, S, Allsop, Jet al. Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 2004; 114 (4): 1004–14.CrossRefGoogle ScholarPubMed
Ward, P, Counsell, S, Allsop, Jet al. Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy. Pediatrics 2006; 117 (4): E619–E630.CrossRefGoogle ScholarPubMed
Shanmugalingam, S, Thornton, JS, Iwata, Oet al. Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. Pediatrics 2006; 118 (4): 1467–77.CrossRefGoogle ScholarPubMed
Martin, LJ, Al-Abdulla, NA, Brambrink, AM, Kirsch, JR, Sieber, FE, Portera-Cailliau, C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 1998; 46 (4): 281–309.CrossRefGoogle ScholarPubMed
Pouwels, PJ, Brockmann, K, Kruse, Bet al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46 (4): 474–85.CrossRefGoogle ScholarPubMed
Cady, EB, Costello, A, Dawson, MJet al. Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1983; 1: 1059–62.CrossRefGoogle ScholarPubMed
Hope, PL, Costello, AMDL, Cady, EBet al. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphxiated infants. Lancet 1984; ii: 366–9.CrossRefGoogle Scholar
Younkin, D, Delivoria-Papadopoulos M. Unique aspects of human cerebral metabolism evaluated with P31-NMR. Ann Neurol 1984; 16: 581–6.CrossRefGoogle Scholar
Laptook, AR, Corbett, RJ, Uauy, R, Mize, C, Mendelsohn, D, Nunally, RL. Use of 31-P NMRS to characterise existing brain damage after neonatal asphyxia. Neurology 1989; 39: 709–12.CrossRefGoogle Scholar
Martin, E, Buchli, R, Ritter, Set al. Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res 1996; 40: 749–58.CrossRefGoogle ScholarPubMed
Azzopardi, D, Wyatt, JS, Reynolds EOR. Prognosis of newborn infants with hypoxic-ischaemic brain injury assessed by P-NIRS. Pediatr Res 1989; 25: 445–51.CrossRefGoogle Scholar
Roth, SC, Edwards, D, Cady, EBet al. Relation between cerebral oxidative metabolism following birth asphyxia and neurodevelopmental outcome. Dev Med Child Neurol 1992; 34 (4): 285–95.CrossRefGoogle ScholarPubMed
Roth, SC, Baudin, J, Cady, EBet al. Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years. Dev Med Child Neurol 1997; 39: 718–25.CrossRefGoogle ScholarPubMed
Blumberg, RM, Cady, EB, Wigglesworth, JS, McKenzie, JE, Edwards, AD. Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia-ischaemia in the developing brain. Exp Brain Res 1997; 113 (1): 130–7.CrossRefGoogle ScholarPubMed
O'Brien, FE, Iwata, O, Thornton, JSet al. Delayed whole-body cooling to 33 or 35 degrees C and the development of impaired energy generation consequential to transient cerebral hypoxia-ischemia in the newborn piglet. Pediatrics 2006; 117 (5): 1549–59.CrossRefGoogle ScholarPubMed
Robertson, NJ, Cowan, F, Cox, IJ, Edwards, AD. Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 2002; 52: 732–42.CrossRefGoogle ScholarPubMed
Kendall, GS, Robertson, NJ, Iwata, O, Peebles, D, Raivich, G. N-Methyl-isobutyl-amiloride ameliorates brain injury when commenced before hypoxia ischemia in neonatal mice. Pediatr Res 2006; 59 (2): 227–31.CrossRefGoogle ScholarPubMed
Lei, H, Peeling, J. Effect of temperature on the kinetics of lactate production and clearance in a rat model of forebrain ischemia. Biochem Cell Biol 1998; 76: 503–9.CrossRefGoogle Scholar
Penrice, J, Cady, EB, Wylezinska, Met al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischaemia. Pediatr Res 1996; 40: 6–14.CrossRefGoogle Scholar
Amess, PN, Wylezinska, M, Lorek, Aet al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 1999; 41: 436–45.Google ScholarPubMed
Rothman, DL, Sibson, NR, Hyder, F, Shen, J, Behar, KL, Shulman, RG. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc London Biol Sci 1991; 354: 1165–77.CrossRefGoogle Scholar
Groenendaal, F, Veenhoven, R, Grond, J, Jansen, GH, Witkamp, TD, Vries, LS. Cerebral lactate and N-acetyl aspartate: choline ratios in asphyxiated full term neonates demonstrated in vivo using proton MRS. Pediatr Res 1994; 35: 148–51.CrossRefGoogle Scholar
Barkovich, AJ, Baranski, K, Vigneron, Det al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. Am J Neuroradiol 1999; 20: 1399–405.Google ScholarPubMed
Robertson, NJ, Cox, IJ, Cowan, FM, Counsell, SJ, Azzopardi, D, Edwards, AD. Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res 1999; 46: 287–96.CrossRefGoogle ScholarPubMed
Miller, SP, Newton, N, Ferriero, DMet al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res 2002; 52 (1): 71–7.CrossRefGoogle ScholarPubMed
Cheong, JL, Cady, EB, Penrice, J, Wyatt, JS, Cox, IJ, Robertson, NJ. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. Am J Neuroradiol 2006; 27: 1546–54.Google ScholarPubMed
Shankaran, S, Laptook, AR, Ehrenkranz, RAet al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353 (15): 1574–84.CrossRefGoogle ScholarPubMed
Azzopardi, D, Robertson, NJ, Cowan, FM, Rutherford, MA, Rampling, M, Edwards, AD. Pilot study of treatment with whole body hypothermia for neonatal encephalopathy. Pediatrics 2000; 106 (4): 684–94.CrossRefGoogle ScholarPubMed
Iwata, S, Iwata, O, Thornton, JSet al. Superficial brain is cooler in small piglets: neonatal hypothermia implications. Ann Neurol 2006; 60: 578–85.CrossRefGoogle ScholarPubMed
Haaland, K, Loberg, EM, Steen, PA, Satas, S, Thoresen, M. The effect of mild post-hypoxic hypothermia on organ pathology in a piglet survival model of global hypoxia. Prenat Neonat 1997; 2: 329–37.Google Scholar
Nedelcu, J, Klein, MA, Aguzzi, A, Martin, E. Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury. Brain Pathol 2000; 10 (1): 61–71.CrossRefGoogle ScholarPubMed
Ma, D, Hossain, M, Chow, Aet al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 2005; 58 (2): 182–93.CrossRefGoogle ScholarPubMed
Rutherford, MA, Azzopardi, D, Whitelaw, Aet al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischemic encephalopathy. Pediatrics 2005; 116 (4): 1001–6.CrossRefGoogle ScholarPubMed
Inder, TE, Hunt, RW, Morley, CJet al. Randomized trial of systemic hypothermia selectively protects the cortex on MRI in term hypoxic-ischemic encephalopathy. J Paediatr 2004; 145: 835–7.CrossRefGoogle ScholarPubMed
Kim, Y, Busto, R, Dietrich, WD, Kraydieh, S, Ginsberg, MD. Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 1996; 27 (12): 2274–3380.CrossRefGoogle ScholarPubMed
Shevell, MI, Majnemer, A, Miller, SP. Neonatal neurological prognostication: the asphyxiated term newborn. Pediatr Neurol 1999; 21: 776–84.CrossRefGoogle Scholar
Gray, PH, Tudehope, DI, Masel, JPet al. Perinatal hypoxic ischaemic brain injury: prediction of outcome. Dev Med Child Neurol 1993; 35: 965–73.CrossRefGoogle ScholarPubMed
Rennie, JM, Hagmann, CF, Robertson, NJ. Outcome after intrapartum hypoxic ischaemia at term. Semin Fetal Neonatal Med 2007; 12 (5): 398–407.CrossRefGoogle ScholarPubMed
Gonzalez, FF, Miller, SP. Does perinatal asphyxia impair cognitive function without cerebral palsy? Arch Dis Child Fetal Neonat Ed 2006; 91: 454–9.CrossRefGoogle ScholarPubMed
Mercuri, E, Ricci, D, Cowan, FMet al. Head growth in infants with hypoxic-ischaemic encephalopathy: correlation with neonatal magnetic resonance imaging. Pediatrics 2000; 106: 235–44.CrossRefGoogle ScholarPubMed
Haan, M, Wyatt, JS, Roth, S, Vargha-Khadem, F, Gadian, D, Mishkin, M. Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci 2006; 9: 350–8.CrossRefGoogle ScholarPubMed
Gadian, DG, Aicardi, J, Watkins, KE, Porter, DA, Mishkin, M, Vargha-Khadem, F. Developmental amnesia associated with early hypoxic-ischaemic injury. Brain 2000; 123: 499–507.CrossRefGoogle ScholarPubMed
Khong, PL, Lam, BCC, Tung, HKS, Wong, V, Chan, FL, Ooi, GC. MRI of neonatal encephalopathy. Clin Radiol 2003; 58: 833–44.CrossRefGoogle ScholarPubMed
Cavalleri, F, Berardi, A, Burlina, AB, Ferrari, F, Mavilla, L. Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 2002; 44 (6): 499–502.CrossRefGoogle ScholarPubMed
Khong, PL, Lam, BC, Chung, BH, Wong, KY, Ooi, GC. Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. Am J Neuroradiol 2003; 24 (6): 1181–3.Google ScholarPubMed