Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:50:58.751Z Has data issue: false hasContentIssue false

13 - Global Metawebs of Spider Predation Highlight Consequences of Land-Use Change for Terrestrial Predator–Prey Networks

from Part II - Food Webs: From Traits to Ecosystem Functioning

Published online by Cambridge University Press:  05 December 2017

John C. Moore
Affiliation:
Colorado State University
Peter C. de Ruiter
Affiliation:
Wageningen Universiteit, The Netherlands
Kevin S. McCann
Affiliation:
University of Guelph, Ontario
Volkmar Wolters
Affiliation:
Justus-Liebig-Universität Giessen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Adaptive Food Webs
Stability and Transitions of Real and Model Ecosystems
, pp. 193 - 213
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, D. V. (2011). Plant Pests. London: Harper Collins Publishers.Google Scholar
Alford, D. V., Nilsson, C., and Ulber, B. (2003). Insect pests of oilseed rape crops. In Biocontrol of Oilseed Rape Pests, ed. Alford, D. V., Oxford: Blackwell Publishing, pp. 941.Google Scholar
Almeida-Neto, M. and Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling and Software, 26, 173178.Google Scholar
Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D., and Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 12271239.Google Scholar
Angelsen, A. (2010). Policies for reduced deforestation and their impact on agricultural production. Proceedings of the National Academy of Sciences of the United States of America, 107, 1963919644.Google Scholar
Attwood, S. J., Maron, M., House, A. P. N., and Zammit, C. (2008). Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Global Ecology and Biogeography, 17, 585599.Google Scholar
Barbosa, P. (1998). Agroecosystems and conservation biological control. In Conservation Biological Control, ed. Barbosa, P., San Diego: Academic Press, pp. 3954.Google Scholar
Bardwell, C. J. and Averill, A. L. (1997). Spiders and their prey in Massachusetts cranberry bogs. Journal of Arachnology, 25, 3141.Google Scholar
Bascompte, J., Jordano, P., Melian, C. J., and Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 93839387.Google Scholar
Bilsing, S. W. (1920). Quantitative studies in the food of spiders. Ohio Journal of Science, 20, 215260.Google Scholar
Birkhofer, K. and Wolters, V. (2012). The global relationship between climate, net primary production and the diet of spiders. Global Ecology and Biogeography, 21, 100108.Google Scholar
Birkhofer, K., Scheu, S., and Wise, D. H. (2007). Small-scale spatial pattern of web-building spiders (Araneae) in Alfalfa: relationship to disturbance from cutting, prey availability, and intraguild interactions. Environmental Entomology, 36, 801810.Google Scholar
Birkhofer, K., Entling, M., and Lubin, Y. (2013). Agroecology: trait composition, spatial relationships, trophic interactions. In Spider Research in the 21st Century: Trends and Perspectives, ed. Penney, D., Manchester: Siri Scientific Press, pp. 200229.Google Scholar
Birkhofer, K., Arvidsson, F., Ehlers, D., et al. (2015) Landscape complexity and organic farming independently affect the biological control of hemipteran pests and yields in spring barley. Landscape Ecology, 31, 567579. DOI: 10.1007/s10980-015–0263-8.Google Scholar
Blitzer, E. J., Dormann, C. F., Holzschuh, A., et al. (2012). Spillover of functionally important organisms between managed and natural habitats. Agriculture Ecosystems & Environment, 146, 3443.Google Scholar
Bluthgen, N., Menzel, F., and Bluthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6, 9.Google Scholar
Bohan, D. A. and Woodward, G. (2013). Editorial commentary: the potential for network approaches to improve knowledge, understanding, and prediction of the structure and functioning of agricultural systems. Advances in Ecological Research, 49, xiiixviii.Google Scholar
Bohan, D. A., Raybould, A., Mulder, C., et al. (2013). Networking agroecology: integrating the diversity of agroecosystem interactions. Advances in Ecological Research, 49, 167.Google Scholar
Dąbrowska-Prot, E., Łuczak, J., and Tarwid, K. (1968). Prey and predator density and their reactions in the process of mosquitoes reduction by spiders in field experiments. Ekologia Polska, 16, 773819.Google Scholar
DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M. (2010). Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience, 3, 178181.Google Scholar
Diehl, E., Mader, V. L., Wolters, V., and Birkhofer, K. (2013). Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia, 173, 579589.Google Scholar
Dormann, C. F. and Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5, 9098.CrossRefGoogle Scholar
Dormann, C. F., Gruber, B., and Fründ, J. (2008). Introducing the bipartite package: analysing ecological networks. R News, 8, 811.Google Scholar
Dunne, J. A. (2006). The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics in Food Webs, ed. Pascual, M. and Dunne, J. A., Santa Fe, NM: Santa Fe Institute Studies in the Sciences of Complexity, pp. 2786.Google Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 1291712922.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011). Trophic downgrading of planet Earth. Science, 333, 301306.Google Scholar
Finlay-Doney, M. and Walter, G. H. (2012). The conceptual and practical implications of interpreting diet breadth mechanistically in generalist predatory insects. Biological Journal of the Linnean Society, 107, 737763.Google Scholar
Gray, C., Baird, D. J., Baumgartner, S., et al. (2014). Ecological networks: the missing links in biomonitoring science. Journal of Applied Ecology, 51, 14441449.Google Scholar
Guseinov, E. F. (2005). Natural prey of the jumping spider Salticus tricinctus (Araneae, Salticidae). Bulletin of the British Arachnological Society, 13, 130132.Google Scholar
Guseinov, E. F., Cerveira, A. M., and Jackson, R. R. (2004). The predatory strategy, natural diet, and life cycle of Cyrba algerina, an araneophagic jumping spider (Salticidae: Spartaeinae) from Azerbaijan. New Zealand Journal of Zoology, 31, 291303.Google Scholar
Harwood, J. D., Sunderland, K. D., and Symondson, W. O. C. (2001). Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. Journal of Applied Ecology, 38, 8899.Google Scholar
Havlík, P., Schneider, U. A., Schmid, E., et al. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39, 56905702.Google Scholar
Heleno, R., Devoto, M., and Pocock, M. (2012). Connectance of species interaction networks and conservation value: is it any good to be well connected? Ecological Indicators, 14, 710.Google Scholar
Hines, J., van der Putten, W. H., de Deyn, G., et al. (2015). Towards an integration of biodiversity–ecosystem functioning and food web theory to advance the understanding of connections between multiple ecosystem functions and service provisioning. Advances in Ecological Research, 253, 161199.Google Scholar
Huseynov, E. F. o. (2005). Natural prey of the jumping spider Menemerus taeniatus (Araneae: Salticidae). European Journal of Entomology, 102, 797799.Google Scholar
Huseynov, E. F. o. (2006a). The prey of the lynx spider Oxyopes globifer (Araneae, Oxyopidae) associated with a semidesert dwarf shrub in Azerbaijan. Journal of Arachnology, 34, 422426.Google Scholar
Huseynov, E. F. o. (2006b). Natural prey of the jumping spider Heliophanus dunini (Araneae: Salticidae) associated with Eryngium plants. Bulletin of the British Arachnological Society, 13, 293296.Google Scholar
Huseynov, E. F. o. (2007a). Natural prey of the crab spider Thomisus onustus (Araneae: Thomisidae), an extremely powerful predator of insects. Journal of Natural History, 41, 23412349.Google Scholar
Huseynov, E. F. o. (2007b). Natural prey of the lynx spider Oxyopes lineatus (Araneae: Oxyopidae). Entomologica Fennica, 18, 144148.Google Scholar
Huseynov, E. F. o. (2007c). Natural prey of the crab spider Runcinia grammica (Araneae: Thomisidae) on Eryngium plants. Bulletin of the British Arachnological Society, 14, 9396.Google Scholar
Huseynov, E. F. o. (2008). Natural prey of the jumping spider Philaeus chrysops (Araneae: Salticidae) in different types of microhabitat. Bulletin of the British Arachnological Society, 14, 262268.Google Scholar
Huseynov, E. F., Cross, F. R., and Jackson, R. R. (2005). Natural diet and prey-choice behaviour of Aelurillus muganicus (Araneae: Salticidae), a myrmecophagic jumping spider from Azerbaijan. Journal of Zoology, 267, 159165.Google Scholar
Ings, T. C., Bascompte, M. J. M., Blüthgen, N., et al. (2009). Ecological networks: beyond food webs. Journal of Animal Ecology, 78, 253269.Google Scholar
Ives, A. R., Cardinale, B. J., and Snyder, W. E. (2005). A synthesis of subdisciplines: predator–prey interactions, and biodiversity and ecosystem functioning. Ecology Letters, 8, 102116.Google Scholar
Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D., and Simpson, S. J. (2011). Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Oecologia, 165, 577583.Google Scholar
Kankaanpää, S. and Carter, T. R. (2004). An Overview of Forest Policies Affecting Land Use in Europe. The Finnish Environment 706, Helsinki: Finnish Environment Institute.Google Scholar
Kiritani, K., Kawahara, S., Sasaba, T., and Nakasuji, F. (1972). Quantitative evaluation of predation by spiders on the green rice leafhopper Nephotettix cincticeps by a sight count method. Researches on Population Ecology, 13, 187200.Google Scholar
Kondoh, M., Kato, S., and Sakato, Y. (2010). Food webs are built up with nested subwebs. Ecology, 91, 31233130.Google Scholar
Kuusk, A.-K. and Ekbom, B. (2010). Lycosid spiders and alternative food: feeding behavior and implications for biological control. Biological Control, 55, 2026.Google Scholar
Kuusk, A.-K. and Ekbom, B. (2012). Feeding habits of lycosid spiders in field habitats. Journal of Pest Science, 85, 253260.Google Scholar
Laliberté, E. and Tylianakis, J. M. (2010). Deforestation homogenizes tropical parasitoid–host networks. Ecology, 91, 17401747.Google Scholar
Lambin, E. F. and Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 34653472.Google Scholar
Landis, D. A., Wratten, S. D., and Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175201.Google Scholar
Layer, K., Hildrew, A. G., Jenkins, G., et al. (2011). Long-term dynamics of a well-characterised food web: four decades of acidification and recovery in the Broadstone stream model system. Advances in Ecological Research, 44, 69117.Google Scholar
Lewinsohn, T. M., Prado, P. I., Jordano, P., Bascompte, J., and Olesen, J. M. (2006). Structure in plant–animal interaction assemblages. Oikos, 113, 174184.Google Scholar
Lewis, T. (1997). Pest thrips in perspective. In Thrips as Crop Pests, ed. Lewis, T., Wallingford: CABI, pp. 113.Google Scholar
Marc, P., Canard, A., and Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture Ecosystems & Environment, 74, 229273.Google Scholar
McKinlay, R. G. (1992). Vegetable Crop Pests. Boca Raton: CRC Press.Google Scholar
Miranda, M., Parrini, F., and Dalerum, F. (2013). A categorization of recent network approaches to analyse trophic interactions. Methods in Ecology and Evolution, 4, 897905.Google Scholar
Müller, J., Bussler, H., Gossner, M. M., Rettelbach, T., and Duelli, P. (2008). The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation, 17, 29793001.Google Scholar
Nentwig, W. (1982). Analyses of the prey of cribellate spiders (Araneae: Filistatidae, Dictynidae, Eresidae). Entomologische Mitteilungen aus dem zoologischen Museum Hamburg, 7, 233244.Google Scholar
Nentwig, W. (1983a). The non-filter function of orb webs in spiders. Oecologia, 58, 418420.Google Scholar
Nentwig, W. (1983b). The prey of web-building spiders compared with feeding experiments (Araneae, Araneidae, Linyphiidae, Pholcidae, Agelenidae). Oecologia, 56, 132139.Google Scholar
Nentwig, W. (1985). Prey analysis of 4 species of tropical orb-weaving spiders (Araneae, Araneidae) and a comparison with Araneids of the temperate zone. Oecologia, 66, 580594.Google Scholar
Nentwig, W. (1987). The prey of spiders. In Ecophysiology of Spiders, ed. Nentwig, W., Berlin: Springer Verlag, pp. 249263.Google Scholar
Netherer, S. and Schopf, A. (2010). Potential effects of climate change on insect herbivores in European forests: general aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259, 831838.Google Scholar
Nyffeler, M. (1999). Prey selection of spiders in the field. Journal of Arachnology, 27, 317324.Google Scholar
Nyffeler, M. and Benz, G. (1978). Prey selection by web spiders Argiope bruennichi (Scop.), Araneus quadratus (Cl.), and Agelena labyrinthica (Cl.) on fallow land near Zurich, Switzerland. Revue Suisse De Zoologie, 85, 747757.Google Scholar
Nyffeler, M. and Benz, G. (1979). Overlap of the niches concerning space and prey of crab spiders (Araneae, Thomisidae) and wolf spiders (Araneae, Lycosidae) in cultivated meadows. Revue Suisse De Zoologie, 86, 855865.Google Scholar
Nyffeler, M. and Benz, G. (1981a). Field studies on the feeding ecology of spiders: observations in the region of Zurich (Switzerland). Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz, 54, 3339.Google Scholar
Nyffeler, M. and Benz, G. (1981b). Some observations on the feeding ecology of the wolf-spider Pardosa lugubris (walck). Deutsche Entomologische Zeitschrift, 28, 297300.Google Scholar
Nyffeler, M. and Benz, G. (1988a). Prey and predatory importance of micryphantid spiders in winter-wheat fields and hay meadows. Journal of Applied Entomology, 105, 190197.Google Scholar
Nyffeler, M. and Benz, G. (1988b). Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter-wheat fields. Journal of Applied Entomology, 106, 123134.Google Scholar
Nyffeler, M. and Benz, G. (1988c). Prey analysis of the spider Achaearanea riparia (Blackw.) (Araneae, Theridiidae), a generalist predator in winter-wheat fields. Journal of Applied Entomology, 106, 425431.Google Scholar
Nyffeler, M. and Sterling, W. L. (1994). Comparison of the feeding niche of polyphagous insectivores (Araneae) in a Texas cotton plantation: estimates of niche breadth and overlap. Environmental Entomology, 23, 12941303.Google Scholar
Nyffeler, M. and Sunderland, K. D. (2003). Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agriculture Ecosystems and Environment, 95, 579612.Google Scholar
Nyffeler, M., Dean, D. A., and Sterling, W. L. (1986). Feeding-habits of the spiders Cyclosa turbinata (Walckenaer) (Araneae, Araneidae) and Lycosa rabida Walckenaer (Araneae, Lycosidae). Southwestern Entomologist, 11, 195201.Google Scholar
Nyffeler, M., Dean, D. A., and Sterling, W. L. (1987). Predation by green lynx spider, Peucetia viridans (Araneae, Oxyopidae), inhabiting cotton and woolly croton plants in east Texas. Environmental Entomology, 16, 355359.Google Scholar
Nyffeler, M., Dean, D. A., and Sterling, W. L. (1988). Prey records of the web-building spiders Dictyna segregata (Dictynidae), Theridion australe (Theridiidae), Tidarren haemorrhoidale (Theridiidae), and Frontinella pyramitela (Linyphiidae) in a cotton agroecosystem. Southwestern Naturalist, 33, 215218.Google Scholar
Nyffeler, M., Dean, D. A., and Sterling, W. L. (1992). Diets, feeding specialization, and predatory role of 2 lynx spiders, Oxyopes salticus and Peucetia viridans (Araneae, Oxyopidae), in a Texas cotton agroecosystem. Environmental Entomology, 21, 14571465.Google Scholar
Olesen, J. E. and Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239262.Google Scholar
Pekar, S., Coddington, J. A., and Blackledge, T. A. (2012). Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66, 776806.Google Scholar
Perez-De la Cruz, M., Sanchez-Soto, S., Ortiz-Garcia, C. F., Zapata-Mata, R., and De la Cruz-Perez, A. (2007). Diversity of insects captured by weaver spiders (Arachnida: Araneae) in the cocoa agroecosystem in Tabasco, Mexico. Neotropical Entomology, 36, 90101.Google Scholar
Poisot, T., Canard, E., Mouillot, D., Mouquet, N., and Gravel, D. (2012) The dissimilarity of species interaction networks. Ecology Letters, 15, 13531361.Google Scholar
Pyle, R., Bentzien, M., and Opler, P. (1981). Insect conservation. Annual Review of Entomology, 26, 233258.Google Scholar
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rabbinge, R. and van Diepen, C. A. (2000). Changes in agriculture and land use in Europe. European Journal of Agronomy, 13, 8599.Google Scholar
Rand, T. A., Tylianakis, J. M., and Tscharntke, T. (2006). Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters, 9, 603614.Google Scholar
Rounsevell, M. D. A., Reginster, I., Araújo, M. B., et al. (2006). A coherent set of future land use change scenarios for Europe. Agriculture Ecosystems and Environment, 114, 5768.Google Scholar
Sala, O. E., Chaplin, F. S., Armesto, J. J., et al. (2000). Biodiversity: global biodiversity scenarios for the year 2100. Science, 287, 17701774.Google Scholar
Sandoval, C. P. (1994). Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Functional Ecology, 8, 701707.Google Scholar
Schmitz, C., van Meijl, H., Kyle, P., et al. (2014). Land‐use change trajectories up to 2050: insights from a global agro‐economic model comparison. Agricultural Economics, 45, 6984.Google Scholar
Smith, H. G., Birkhofer, K., Clough, Y., et al. (2014) Beyond dispersal: the role of animal movement in modern agricultural landscapes. In Animal Movement Across Scales, ed. Hansson, L. A. and Åkesson, S., Oxford: Oxford University Press.Google Scholar
Smith, P., Gregory, P. J., Van Vuuren, D., et al. (2010). Competition for land. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 29412957.Google Scholar
Spittlehouse, D. L. and Stewart, R. B. (2004). Adaptation to climate change in forest management. Journal of Ecosystems and Management, 4, 111.Google Scholar
Stouffer, D. B., Sales-Pardo, M., Sirer, M. I., and Bascompte, J. (2012). Evolutionary conservation of species’ roles in food webs. Science, 335, 14891492.Google Scholar
Sunderland, K. D., Powell, W., and Symondson, W. O. C. (2005). Populations and communities. In Insects as Natural Enemies: A Practical Perspective, ed. Jervis, M. A., Dordrecht: Springer, pp. 299434.Google Scholar
Thebault, E. and Fontaine, C. (2008). Does asymmetric specialization differ between mutualistic and trophic networks? Oikos, 117, 555563.Google Scholar
Thompson, R. M., Brose, U., Dunne, J. A., et al. (2012). Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 27, 689697.Google Scholar
Tilman, D. (1999). Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences of the United States of America, 96, 59956000.Google Scholar
Tilman, D., Fargione, J., Wolff, B., et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281284.Google Scholar
Tixier, P., Peyrard, N., Auberlot, J.-N., et al. (2013). Modelling interaction networks for enhanced ecosystem services in agroecosystems. Advances in Ecological Research, 49, 437480.Google Scholar
Traugott, M., Kamenova, S., Ruess, L., Seeber, J., and Plantegenest, M. (2013). Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Advances in Ecological Research, 49, 177224.Google Scholar
Tylianakis, J. M., Tscharntke, T., and Lewis, O. T. (2007). Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445, 202205.Google Scholar
Tylianakis, J. M., Laliberté, E., Nielsen, A., and Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143, 22702279.Google Scholar
Uetz, G. W. and Hartsock, S. P. (1987). Prey selection in an orb-weaving spider Micrathena gracilis (Araneae, Araneidae). Psyche, 94, 103116.Google Scholar
Uetz, G. W., Johnson, A. D., and Schemske, D. W. (1978). Web placement, web structure, and prey capture in orb-weaving spiders. Bulletin of the British Arachnological Society, 4, 141148.Google Scholar
van Emden, H. F., and Harrington, R. (2007). Aphids as Crop Pests. Wallingford: CABI.Google Scholar
van der Putten, W. H., de Ruiter, P. C., Bezemer, T. M., et al. (2004). Trophic interactions in a changing world. Basic and Applied Ecology, 5, 487494.Google Scholar
Wise, D. H. (1993). Spiders in Ecological Webs. Cambridge, Cambridge University Press.Google Scholar
Wise, D. H. and Barata, J. L. (1983). Prey of 2 syntopic spiders with different web structures. Journal of Arachnology, 11, 271281.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×