Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-11T01:22:44.231Z Has data issue: false hasContentIssue false

5 - The roles of genes and the environment in the expression and evolution of alternative tactics

Published online by Cambridge University Press:  10 August 2009

Douglas J. Emlen
Affiliation:
Division of Biological Sciences The University of Montana Missoula, MT 59812 USA
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

In many animal populations, individuals may develop into any of several alternative phenotypes (e.g., guarding and sneaking male forms). Occasionally, the phenotype adopted by an individual depends entirely on the presence of a specific allele(s). More typically, it depends on the environment: individuals encountering one set of conditions produce one phenotype, individuals encountering a different set of conditions produce an alternative – often strikingly different – phenotype. Facultatively adopted alternative tactics comprise unusually tractable and intuitive forms of developmental phenotypic plasticity, and their underlying regulatory mechanisms clearly illustrate how genes and the environment can interact to control animal development. Here I review the basic components of these regulatory mechanisms to show how alternative trajectories of development are coupled with the specific environmental conditions that animals encounter. Explicit consideration of these underlying mechanisms provides a useful framework for thinking about heritable variation in tactic expression and for considering more precisely how animal alternative tactics evolve. I illustrate this integration of developmental and evolutionary perspectives using an insect example (horned and hornless male beetles), but analogous processes regulate tactic expression in other arthropods and in vertebrates.

INTRODUCTION

Expression of alternative reproductive tactics (ARTs) is often exquisitely sensitive to the environment – tactic expression is “phenotypically plastic.” Ambient abiotic conditions, population density, the relative sizes or status of rival individuals, and the relative frequency of expressed alternatives all can influence the tactic adopted by an animal: individuals developing under one set of conditions express one tactic; genetically similar (e.g., sibling) individuals exposed to a different set of conditions express an alternative tactic (Figure 5.1).

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 85 - 108
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouheif, E. and Wray, G. A. 2002. Evolution of the genetic network underlying wing polyphenism in ants. Science 297, 249–252.CrossRefGoogle ScholarPubMed
Adachi-Yamada, T. and O'Connor, M. B. 2002. Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Developmental Biology 251, 74–90.CrossRefGoogle ScholarPubMed
Andres, A. J., Fletcher, J. C., Karim, F. D., and Thummel, C. S. 1993. Molecular analysis of the initiation of metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Developmental Biology 160, 388–404.CrossRefGoogle ScholarPubMed
Asencot, M. and Lensky, Y. 1976. The effect of sugars and juvenile hormone on the differentiation of the female honeybee larvae (Apis mellifera L.) to queens. Life Sciences 18, 693–700.CrossRefGoogle Scholar
Awiti, L. R. and Hidaka, T. 1982. Neuroendocrine mechanisms involved in pupal color dimorphism in swallowtail Papilio xuthus. Insect Science Applications 3, 181–192.Google Scholar
Ayoade, O., Morooka, S., and Tojo, S. 1999. Enhancement of short wing formation and ovarian growth in the genetically defined macropterous strain of the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology 45, 93–100.CrossRefGoogle ScholarPubMed
Basler, K. and Struhl, G. 1994. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214.CrossRefGoogle ScholarPubMed
Beldade, P. and Brakefield, P. M. 2002. The genetics and evo-devo of butterfly wing patterns. Nature Reviews Genetics 3, 442–452.CrossRefGoogle ScholarPubMed
Berger, E. M., Goudie, K., Klieger, L., and DeCato, R. 1992. The juvenile hormone analogue, methoprene, inhibits ecdysterone induction of small heat shock protein gene expression. Developmental Biology 151, 410–418.CrossRefGoogle ScholarPubMed
Bertuso, A. G., Morooka, S., and Tojo, S. 2002. Sensitive periods for wing development and precocious metamorphosis after precocene treatment of the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology 48, 221–229.CrossRefGoogle ScholarPubMed
Bollenbacher, W. E. 1988. The interendocrine regulation of larval–pupal development in the tobacco hornworm, Manduca sexta: a model. Journal of Insect Physiology 34, 941–947.CrossRefGoogle Scholar
Bonner, J. T. 1988. The Evolution of Complexity by Means of Natural Selection. Princeton, NJ: Princeton University Press.Google Scholar
Botens, F. F. W., Rembold, H., and Dorn, A. 1997. Phase-related juvenile hormone determinations in field catches and laboratory strains of different Locusta migratoria subspecies. In Kawashima, S. and Kikuyama, S. (eds.) Advances in Comparative Endocrinology, pp. 197–203. Bologna, Italy: Monduzzi.Google Scholar
Bounhiol, J. J. 1938. Recherches expérimentales sur le déterminisme de la métamorphose chez Lépidoptères. Biologie Bulletin (Suppl.) 24, 1–199.Google Scholar
Brakefield, P. M., Gates, J., Keys, D., et al. 1996. Development, plasticity and evolution of butterfly eyespot patterns. Nature 384, 236–242.CrossRefGoogle ScholarPubMed
Brakefield, P. M., Kesbeke, F., and Koch, P. B. 1998. The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana. American Naturalist 152, 853–860.CrossRefGoogle ScholarPubMed
Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M., and Edgar, B. A. 2002. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell 2, 239–249.CrossRefGoogle ScholarPubMed
Brockmann, H. J. 2001. The evolution of alternative strategies and tactics. Advances in the Study of Behavior 30, 1–51.CrossRefGoogle Scholar
Brogiolo, W., Stocker, H., Ikeya, T., et al. 2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology 11, 213–221.CrossRefGoogle ScholarPubMed
Browder, M. H., D'Amico, L. J., and Nijhout, H. F. 2001. The role of low levels of juvenile hormone esterase in the metamorphosis of Manduca sexta. Journal of Insect Science 1, 1–4.CrossRefGoogle ScholarPubMed
Brunetti, C., Selegue, J. E., Monterio, A., et al. 2001. The generation and diversification of butterfly eyespot patterns. Current Biology 11, 1578–1585.CrossRefGoogle Scholar
Bryant, P. J. 2001. Growth factors controlling imaginal disc growth in Drosophila. In Bock, G., Cardew, G., and Goode, J. A. (eds.) The Cell Cycle and Development, pp. 182–199. New York: John Wiley.CrossRefGoogle Scholar
Cambefort, Y. 1991. Biogeography and evolution. In Hanski, I. and Cambefort, Y. (eds.) Dung Beetle Ecology, pp. 51–68. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Cambefort, Y. and Hanski, I. 1991. Dung beetle population biology. In Hanski, I. and Cambefort, Y. (eds.) Dung Beetle Ecology, pp. 36–50. Princeton: Princeton University Press.CrossRefGoogle Scholar
Campbell, G. 2002. Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418, 781–785.CrossRefGoogle ScholarPubMed
Campbell, G., Weaver, T., and Tomlinson, A. 1993. Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox aristaless. Cell 74, 1113–1123.CrossRefGoogle ScholarPubMed
Chapman, R. F. 1982. The Insects: Structure and Function. London: Hodder and Stoughton.Google Scholar
Chen, C., Jack, J., and Garofalo, R. S. 1996. The Drosophila insulin receptor is required for normal growth. Endocrinology 137, 846–856.CrossRefGoogle ScholarPubMed
Cherbas, P. and Cherbas, L. 1996. Molecular aspects of ecdysteroid hormone action. In Gilbert, L. I., Tata, J. R., and Atkinson, B. G. (eds.) Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, pp. 175–222. San Diego, CA: Academic Press.Google Scholar
Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology 110, 155–172.CrossRefGoogle ScholarPubMed
Cheverud, J. M. 1996. Developmental integration and the evolution of pleiotropy. American Zoologist 36, 44–50.CrossRefGoogle Scholar
Clark, R. A. 1997. Dimorphic males display alternative reproductive strategies in the marine amphipod Jassa marmorata Holmes (Corophioidea: Ischyroceridae). Ethology 103, 531–553.CrossRefGoogle Scholar
Cnaani, J., Robinson, G. E., and Hefetz, A. 2000. The critical period for caste determination in Bombus terrestris and its juvenile hormone correlates. Journal of Comparative Physiology A 186, 1089–1094.CrossRefGoogle ScholarPubMed
Cohen, S. M. 1993. Imaginal disc development. In Bate, M. and Martinez-Arias, A. (eds.) The Development of Drosophila melanogaster, pp. 747–841. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Cremer, S. and Heinze, J. 2003. Stress grows wings: environmental induction of winged dispersal males in Cardiocondyla ants. Current Biology 13, 219–223.CrossRefGoogle ScholarPubMed
Cusson, M., Tobe, S., and McNeil, J. 1994. Juvenile hormones: their role in the regulation of the pheromonal communication system of the armyworm moth, Pseudaletia unipuncta. Archives of Insect Biochemistry and Physiology 25, 329–345.CrossRefGoogle Scholar
Danforth, B. N. 1991. The morphology and behavior of dimorphic males in Perdita portalis (Hymenoptera: Andrenidae). Behavioral Ecology and Sociobiology 29, 235–247.CrossRefGoogle Scholar
Day, S. J. and Lawrence, P. A. 2000. Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987.Google ScholarPubMed
Moed, G. H., Kruitwagen, C. L. J. J., Jong, G., and Scharloo, W. 1999. Critical weight for the induction of pupariation in Drosophila melanogaster: genetic and environmental variation. Journal of Evolutionary Biology 12, 852–858.CrossRefGoogle Scholar
Denno, R. F., Douglass, L. W., and Jacobs, D. 1986. Effects of crowding and host plant nutrition on a wing dimorphic planthopper. Ecology 67, 116–123.CrossRefGoogle Scholar
Denno, R. F., Roderick, G. K., Peterson, M. A., et al. 1996. Habitat persistence underlies intraspecific variation and dispersal strategies of planthoppers. Ecological Monographs 66, 389–408.CrossRefGoogle Scholar
Denver, R. J. 1997. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Hormones and Behavior 31, 169–179.CrossRefGoogle ScholarPubMed
Diaz-Benjumea, F. J., Cohen, B., and Cohen, S. M. 1994. Cell interaction between compartments establishes the proximal–distal axis of Drosophila legs. Nature 372, 175–179.CrossRefGoogle ScholarPubMed
Dingle, H. and Winchell, R. 1997. Juvenile hormone as a mediator of plasticity in insect life histories. Archives of Insect Biochemistry and Physiology 35, 359–373.3.0.CO;2-N>CrossRefGoogle Scholar
Dogra, G. S., Ulrich, G. M., and Rembold, H. 1977. A comparative study of the endocrine system of the honeybee larvae under normal and experimental conditions. Zeitschrift für Naturforschung, 32C, 637–642.Google Scholar
Eberhard, W. G. 1982. Beetle horn dimorphism: making the best of a bad lot. American Naturalist 119, 420–426.CrossRefGoogle Scholar
Edgar, B. A. 1999. From small flies come big discoveries about size control. Nature Cell Biology 1, E191–E193.CrossRefGoogle ScholarPubMed
Emlen, D. J. 1994. Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proceedings of the Royal Society of London B 256, 131–136.CrossRefGoogle Scholar
Emlen, D. J. 1996. Artificial selection on horn length–body size allometry in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 50, 1219–1230.CrossRefGoogle Scholar
Emlen, D. J. 1997a. Alternative reproductive tactics and male dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behavioral Ecology and Sociobiology 41, 335–341.CrossRefGoogle Scholar
Emlen, D. J. 1997b. Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proceedings of the Royal Society of London B 264, 567–574.CrossRefGoogle Scholar
Emlen, D. J. 2000. Integrating development with evolution: a case study with beetle horns. BioScience 50, 403–418.CrossRefGoogle Scholar
Emlen, D. J. 2001. Costs and the diversification of exaggerated animal structures. Science 291, 1534–1536.CrossRefGoogle ScholarPubMed
Emlen, D. J. and Allen, C. E. 2004. Genotype to phenotype: physiological control of trait size and scaling in insects. Integrative and Comparative Biology 43, 617–634.CrossRefGoogle Scholar
Emlen, D. J. and Nijhout, H. F. 1999. Hormonal control of male horn length dimorphism in the horned beetle Onthophagus taurus. Journal of Insect Physiology 45, 45–53.CrossRefGoogle Scholar
Emlen, D. J. and Nijhout, H. F. 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology 45, 661–708.CrossRefGoogle ScholarPubMed
Emlen, D. J. and Nijhout, H. F. 2001. Hormonal control of male horn length dimorphism in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae): a second critical period of sensitivity to juvenile hormone. Journal of Insect Physiology 47, 1045–1054.CrossRefGoogle ScholarPubMed
Emlen, D. J., Marangelo, J., Ball, B., and Cunningham, C. W. 2005. Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus. Evolution 59, 1060–1084.CrossRefGoogle ScholarPubMed
Emlen, D. J., Szafran, Q., Corley, L. S., and Dworkin, I. 2006. Candidate genes for the development and evolutionary diversification of beetle horns. Heredity (in press).Google Scholar
Evans, J. D. and Wheeler, D. E. 1999. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America 96, 5575–5580.CrossRefGoogle ScholarPubMed
Evans, J. D. and Wheeler, D. E. 2000. Expression profiles during honeybee caste determination. Genome Biology 2.1, pp. research0001.1-research0001.6. Available online at: http://genomebiology.com/2000/2/1/research/0001.1.
Evans, J. D. and Wheeler, D. E. 2001. Gene expression and the evolution of insect polyphenisms. BioEssays 23, 62–68.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Fabre, J. H. 1899. Souvenirs Entomologiques Excerpts translated by A. T. de Mattos in More Beetles (1922) London: Hodder and Stoughton.Google Scholar
Fairbairn, D. J. and Yadlowski, D. E. 1997. Coevolution of traits determining migratory tendency: correlated response of a critical enzyme, juvenile hormone esterase, to selection on wing morphology. Journal of Evolutionary Biology 10, 495–513.CrossRefGoogle Scholar
Feyereisen, R. 1985. Radiochemical assay for juvenile hormone III biosynthesis in vitro. Methods in Enzymology 111, 530–539.CrossRefGoogle Scholar
Finch, C. E. and Rose, M. R. 1995. Hormones and the physiological architecture of life history evolution. Quarterly Review of Biology 10, 1–52.CrossRefGoogle Scholar
Flatt, T. and Kawecki, T. J. 2004. Pleiotropic effects of methoprene-tolerant (Met), a gene involved in juvenile hormone metabolism, on life history traits in Drosophila melanogaster. Genetica 122, 141–160.CrossRefGoogle Scholar
Foran, C. M. and Bass, A. H. 1999. Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. General and Comparative Endocrinology 116, 141–152.CrossRefGoogle ScholarPubMed
Galindo, M. I., Bishop, S. A., Greig, S., and Couso, J. P. 2002. Leg patterning driven by proximal–distal interactions and EGFR signaling. Science 297, 256–259.CrossRefGoogle ScholarPubMed
Ghouri, A. S. K. and McFarlane, J. E. 1958. Occurrence of a macropterous form of Gryllodes sigillatus (Walker) (Orthoptera:Gryllidae) in laboratory culture. Canadian Journal of Zoology 36, 837–838.CrossRefGoogle Scholar
Gilbert, L. I. 1989. The endocrine control of molting: the tobacco hornworm, Manduca sexta, as a model system. In Koolman, J. (ed.) Ecdysone: From Chemistry to Mode of Action, pp. 448–471. Stuttgart, Germany: Thieme-Verlag.Google Scholar
Gilbert, L. I., Rybczynski, R., and Tobe, S. 1996. Endocrine cascade in insect metamorphosis. In Gilbert, L. I., Tata, J. R., and Atkinson, B. G. (eds.) Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, pp. 60–108. San Diego, CA: Academic Press.Google Scholar
Greene, E. 1989. A diet induced developmental polymorphism in a caterpillar. Science 243, 643–646.CrossRefGoogle Scholar
Greene, E. 1999. Phenotypic variation in larval development and evolution: polymorphism, polyphenism, and developmental reaction norms. In Hall, B. K. and Wake, M. H. (eds.) The Origin and Evolution of Larval Forms, pp. 379–410. San Diego, CA: Academic Press.Google Scholar
Greene, E., Lyon, B. E., Muehter, V. R., et al. 2000. Disruptive sexual selection for plumage colouration in a passerine bird. Nature 407, 1000–1003.CrossRefGoogle Scholar
Gross, M. R. 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11, 92–98.CrossRefGoogle ScholarPubMed
Gross, M. R. and Repka, J. 1998. Stability with inheritance in the conditional strategy. Journal of Theoretical Biology 192, 445–453.CrossRefGoogle ScholarPubMed
Grozinger, C. M., Sharabash, N. M., Whitfield, C. W., and Robinson, G. E. 2003. Pheromone-mediated gene expression in the honey bee brain. Proceedings of the National Academy of Sciences of the United States of America 100, 14519–14525.CrossRefGoogle ScholarPubMed
Gu, X. and Zera, A. J. 1996. Quantitative genetics of juvenile hormone esterase, juvenile hormone binding and general esterase activity in the cricket, Gryllus assimilis. Heredity 76, 136–142.CrossRefGoogle Scholar
Halffter, G. and Edmonds, W. G. 1982. The Nesting Behavior of Dung Beetles (Scarabaeidae): An Ecological and Evolutive Approach, Publication No. 10. Mexico City: Instituto de Ecologica.Google Scholar
Hammock, B. D. 1985. Regulation of juvenile hormone titer: degradation. In Kerkut, G. A. and Gilbert, L. I. (eds.) Comprehensive Insect Physiology, Biochemistry, and Pharmacology, vol. 7, pp. 431–472. New York: Pergamon Press.Google Scholar
Harrison, R. G. 1979. Flight polymorphism in the field cricket Gryllus pennsylvanicus. Oecologia 40, 125–132.CrossRefGoogle ScholarPubMed
Hartfelder, K. 1990. Regulatory steps in caste development of eusocial bees. In Engels, W. (ed.) Social Insects: An Evolutionary Approach to Castes and Reproduction, pp. 245–264. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Hartfelder, K. and Emlen, D. J. 2005. Endocrine control of insect polyphenism. In Gilbert, L. I., Iatrou, K., and Gill, S. S. (eds.) Comprehensive Molecular Insect Science, vol. 3, Endocrinology, pp. 651–703. Boston, MA: Elsevier.Google Scholar
Hartfelder, K. and Engels, W. 1998. Social insect polymorphism: hormonal regulation of plasticity in development and reproduction in the honeybee. Current Topics in Developmental Biology 40, 45–77.CrossRefGoogle Scholar
Hartfelder, K., Bitondi, M. M. G., Santana, W. C., and Simões, Z. L. P. 2002. Ecdysteroid titers and reproduction in queens and workers of the honey bee and of a stingless bee: loss of ecdysteroid function at increasing levels of sociality?Insect Biochemistry and Molecular Biology 32, 211–216.CrossRefGoogle ScholarPubMed
Hazel, W. N. 1977. The genetic basis of pupal colour dimorphism and its maintenance by natural selection in Papilio polyxenes (Papilionidae: Lepidoptera). Heredity 38, 227–236.CrossRefGoogle Scholar
Hazel, W. N. and West, D. A. 1979. Environmental control of pupal colour in swallowtail butterflies (Lepidoptera: Papilionidae: Battus philenor (L.) and Papilio polyxenes Fabr.)Ecological Entomology 4, 393–408.CrossRefGoogle Scholar
Hazel, W. N. and West, D. A. 1996. Pupation site preference and environmentally-cued pupal colour dimorphism in the swallowtail butterflies Papilio polyxenes Fabr. (Lepidoptera: Papilionidae). Biological Journal of the Linnean Society 57, 81–87.Google Scholar
Hazel, W. N., Smock, R., and Johnson, M. D. 1990. A polygenic model for the evolution and maintenance of conditional strategies. Proceedings of the Royal Society of London B 242, 181–187.CrossRefGoogle ScholarPubMed
Hepperle, C. and Hartfelder, K. 2001. Differentially expressed regulatory genes in honey bee caste development. Naturwissenschaften 88, 113–116.CrossRefGoogle ScholarPubMed
Hodin, J. and Riddiford, L. M. 2000. Different mechanisms underlie phenotypic plasticity and interspecific variation for a reproductive character in Drosophilids (Insecta: Diptera). Evolution 54, 1638–1653.CrossRefGoogle Scholar
Huang, H., Potter, C. J., Tao, W., et al. 1999. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372.Google ScholarPubMed
Hunt, J. and Simmons, L. W. 1997. Patterns of fluctuating asymmetry in beetle horns: an experimental examination of the honest signaling hypothesis. Behavioral Ecology and Sociobiology 41, 109–114.CrossRefGoogle Scholar
Hunt, J. and Simmons, L. W. 1998. Patterns of parental provisioning covary with male morphology in a horned beetle (Onthophagus taurus) (Coleoptera: Scarabaeidae). Behavioral Ecology and Sociobiology 42, 447–451.CrossRefGoogle Scholar
Hunt, J. and Simmons, L. W. 2001. Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proceedings of the Royal Society of London B 268, 2409–2414.CrossRefGoogle ScholarPubMed
Hunt, J. and Simmons, L. W. 2002. The genetics of maternal care: direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus. Proceedings of the National Academy of Sciences of the United States of America 99, 6828–6832.CrossRefGoogle ScholarPubMed
Hunt, J., Simmons, L. W., and Kotiaho, J. S. 2002. A cost of maternal care in the dung beetle Onthophagus taurus?Journal of Evolutionary Biology 15, 57–64.CrossRefGoogle Scholar
Iguchi, Y. 1998. Horn dimorphism of Allomyrina dichotoma septentrionalis (Coleoptera: Scarabaeidae) affected by larval nutrition. Annals of the Entomological Society of America 91, 845–847.CrossRefGoogle Scholar
Ikeya, T., Galic, M., Belawat, P., Nairz, K., and Hafen, E. 2002. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current Biology 12, 1293–1300.CrossRefGoogle ScholarPubMed
Injeyan, H. S. and Tobe, S. S. 1981. Phase polymorphism in Schistocerca gregaria: assessment of juvenile hormone synthesis in relation to vitellogenesis. Journal of Insect Physiology 27, 203–210.CrossRefGoogle Scholar
Irvine, K. D. and Wieschaus, E. 1994. fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606.CrossRefGoogle ScholarPubMed
Jindra, M., Malone, F., Hiruma, K., and Riddiford, L. W. 1996. Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Developmental Biology 180, 258–272.CrossRefGoogle ScholarPubMed
Jockusch, E. L., Nulsen, C., Newfeld, S. J., and Nagy, L. M. 2000. Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127, 1617–1626.Google Scholar
Johnston, L. A. and Gallant, P. 2002. Control of growth and organ size in Drosophila. BioEssays 24, 54–64.CrossRefGoogle ScholarPubMed
Johnston, L. A. and Schubiger, G. 1996. Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination. Development 122, 3519–3529.Google ScholarPubMed
Kawamura, K., Shibata, T., Saget, O., Peel, D., and Bryant, P. J. 1999. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126, 211–219.Google ScholarPubMed
Keisman, E. L., Christiansen, A. E., and Baker, B. S. 2001. The sex determination gene doublesex regulates the A/P organizer to direct sex-specific patterns of growth in the Drosophila genital imaginal disc. Developmental Cell 1, 215–225.CrossRefGoogle ScholarPubMed
Ketterson, E. D. and Nolan, V. 1992. Hormones and life histories: an integrative approach. American Naturalist 140, S33–S62.CrossRefGoogle Scholar
Keys, D. N., Lewis, D. L., Selegue, J. E., et al. 1999. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534.CrossRefGoogle ScholarPubMed
Koch, P. B. and Bückmann, D. 1987. Hormonal control of seasonal morphs by the timing of ecdysteroid release in Araschnia levana L. (Nymphalidae: Lepidoptera). Journal of Insect Physiology 33, 823–829.CrossRefGoogle Scholar
Kotiaho, J. S., Simmons, L. W., Hunt, J., and Tomkins, J. L. 2003. Males influence maternal effects that promote sexual selection: a quantitative genetic experiment with dung beetles Onthophagus taurus. American Naturalist 161, 852–859.CrossRefGoogle ScholarPubMed
Krebs, R. A. and Loeschcke, V. 1997. Estimating heritability in a threshold trait: heat-shock tolerance in Drosophila buzzatii. Heredity 79, 252–259.CrossRefGoogle Scholar
Kukuk, P. F. 1996. Male dimorphism in Lasioglossum (Chialictus) hemichalceum: the role of larval nutrition. Journal of the Kansas Entomological Society 69, 147–157.Google Scholar
Kurdziel, J. P. and Knowles, L. L. 2002. The mechanisms of morph determination in the amphipod Jassa: implications for the evolution of alternative male phenotypes. Proceedings of the Royal Society of London B 269, 1749–1754.CrossRefGoogle ScholarPubMed
Laufer, H. and Ahl, J. S. B. 1995. Mating behavior and methyl farnesoate levels in male morphotypes of the spider crab, Libinia emarginata (Leach). Journal of Experimental Marine Biology and Ecology 193, 15–20.CrossRefGoogle Scholar
Lawrence, P. A. and Struhl, G. 1996. Morphogens, compartments, and pattern: lessons from Drosophila?Cell 85, 951–961.CrossRefGoogle ScholarPubMed
Lecuit, T. and Cohen, S. M. 1997. Proximal–distal axis formation in the Drosophila leg. Nature 388, 139–145.CrossRefGoogle ScholarPubMed
Leevers, S. J., Weinkove, D., MacDougall, L. K., Hafen, E., and Waterfield, M. D. 1996. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO Journal 15, 6584–6594.Google ScholarPubMed
Lenz, M. 1976. The dependence of hormone effects in termite caste determination on external factors. In Lüscher, M. (ed.) Phase and Caste Determination in Insects: Endocrine Aspects, pp. 73–89. Oxford, UK: Pergamon Press.Google Scholar
Lepesant, J.-A. and Richards, G. 1989. Ecdysteroid-regulated genes. In Koolman, J. (ed.) Ecdysone: From Chemistry to Mode of Action, pp. 355–367. Stuttgart, Germany: Thieme-Verlag.Google Scholar
Levins, R. 1968. Evolution in Changing Environments. Princeton, NJ: Princeton University Press.Google Scholar
Lively, C. M. 1986. Canalization versus developmental conversion in a spatially variable environment. American Naturalist 128, 561–572.CrossRefGoogle Scholar
Lüscher, M. 1972. Environmental control of juvenile hormone (JH) secretion and caste differentiation in termites. Comparative Endocrinology (Supplement) 3, 509–514.CrossRefGoogle Scholar
Martin, G. R. 1998. The roles of FGFs in the early development of vertebrate limbs. Genes and Development 12, 1571–1586.CrossRefGoogle ScholarPubMed
Martín-Castellanos, C. and Edgar, B. A. 2002. A characterization of the effects of Dpp signaling on cell growth and proliferation in the Drosophila wing. Development 129, 1003–1013.Google ScholarPubMed
McFarlane, J. E. 1962. Effect of diet and temperature on wing development of Gryllodes sigillatus (Walk.) (Orthoptera: Gryllidae). Annales de la Société Entomologique de Québec 7, 28–33.Google Scholar
Merrifield, F. and Pouldton, E. B. 1899. The color relation between the pupae of Papilio machaon, Pieris napai and many other species, and the surroundings of the larvae preparing to pupate, etc. Transactions of the Entomological Society of London 1899, 369–433.Google Scholar
Mirth, C., Truman, J. W., and Riddiford, L. M. 2005. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Current Biology 15, 1796–1807.CrossRefGoogle ScholarPubMed
Miura, T. 2001. Morphogenesis and gene expression in the soldier-caste differentiation of termites. Insectes Sociaux 48, 216–223.CrossRefGoogle Scholar
Miura, T., Kamikouchi, A., Sawata, M., et al. 1999. Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proceedings of the National Academy of Sciences of the United States of America 96, 13874–13879.CrossRefGoogle Scholar
Moczek, A. P. 1998. Horn polyphenism in the beetle Onthophagus taurus: larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behavioral Ecology 9, 636–642.CrossRefGoogle Scholar
Moczek, A. P. 2002. Allometric plasticity in a polyphenic beetle. Ecological Entomology 27, 58–67.CrossRefGoogle Scholar
Moczek, A. P. 2003. The behavioral ecology of threshold evolution in a polyphenic beetle. Behavioral Ecology 14, 841–854.CrossRefGoogle Scholar
Moczek, A. P. and Emlen, D. J. 1999. Proximate determination of male horn dimorphism in the beetle Onthophagus taurus (Coleoptera: Scarabaeidae). Journal of Evolutionary Biology 12, 27–37.CrossRefGoogle Scholar
Moczek, A. P. and Emlen, D. J. 2000. Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes?Animal Behaviour 59, 459–466.CrossRefGoogle ScholarPubMed
Moczek, A. P., Nagy, L. M. 2005. Diverse developmental mechanisms contribute to different levels of diversity in horned beetles. Evolution and Development 7, 175–185.CrossRefGoogle ScholarPubMed
Moczek, A. P. and Nijhout, H. F. 2002. Developmental mechanisms of threshold evolution in a polyphenic beetle. Evolution and Development 4, 252–264.CrossRefGoogle Scholar
Moczek, A. P. and Nijhout, H. F. 2004. Trade-offs during the development of primary and secondary sexual traits in a horned beetle. American Naturalist 163, 184–191.CrossRefGoogle Scholar
Moczek, A. P., Hunt, J., Emlen, D. J., and Simmons, L. W. 2002. Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research 4, 587–601.Google ScholarPubMed
Moore, M. C., Hews, D. K., and Knapp, R. 1998. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. American Zoologist 38, 133–152.CrossRefGoogle Scholar
Moran, N. A. 1992. The evolutionary maintenance of alternative phenotypes. American Naturalist 139, 971–989.CrossRefGoogle Scholar
Morooka, S. and Tojo, S. 1992. Maintenance and selection of strains exhibiting specific wing form and body colour under high density conditions in the brown planthopper Nilaparvata lugens (Homoptera: Delphacidae). Applied Entomology and Zoology 27, 445–454.CrossRefGoogle Scholar
Neumann, C. J. and Cohen, S. M. 1996. Distinct mitogenic and cell fate specification functions of wingless in different regions of the wing. Development 122, 1781–1789.Google Scholar
Nijhout, H. F. 1994. Insect Hormones. Princeton, NJ: Princeton University Press.Google Scholar
Nijhout, H. F. 1999. Control mechanisms of polyphenic development in insects. BioScience 49, 181–192.CrossRefGoogle Scholar
Nijhout, H. F. and Emlen, D. J. 1998. Competition among body parts in the development and evolution of insect morphology. Proceedings of the National Academy of Sciences of the United States of America 95, 3685–3689.CrossRefGoogle ScholarPubMed
Nijhout, H. F. and Grunert, L. W. 2003. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 99, 15446–15450.CrossRefGoogle Scholar
Niwa, N., Inoue, Y., Nozawa, A., et al. 2000. Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127, 4373–4381.Google ScholarPubMed
Oliveira, R. F., Canario, A. V. M., and Grober, M. S. 2001. Male sexual polymorphism, alternative reproductive tactics, and androgens in combtooth blennies (Pisces: Blennidae). Hormones and Behavior 40, 266–275.CrossRefGoogle Scholar
O'Neill, K. M. and Evans, H. E. 1983. Alternative male mating tactics in Bembicinus quinquespinosus (Hymenoptera: Sphecidae): correlations with size and color variation. Behavioral Ecology and Sociobiology 14, 39–46.CrossRefGoogle Scholar
Ono, S. 1982. Effect of juvenile hormone on the caste determination in the ant Pheidole fervida Smith (Hymenoptera: Formicidae). Applied Entomology and Zoology 17, 1–7.CrossRefGoogle Scholar
Panganiban, G., Irvine, S. M., Lowe, C., et al. 1997. The origin and evolution of animal appendages. Proceedings of the National Academy of Sciences of the United States of America 94, 5162–5166.CrossRefGoogle ScholarPubMed
Pearce, A. N., Huang, Z. Y., and Breed, M. D. 2001. Juvenile hormone and aggression in honey bees. Journal of Insect Physiology 47, 1243–1247.CrossRefGoogle ScholarPubMed
Peifer, M., Rauskolb, C., Williams, M., Riggleman, B., and Wieschaus, E. 1991. The segment polarity gene armadillo interacts with the wingless signalling pathway in both embryonic and adult pattern formation. Development 111, 1029–1043.Google Scholar
Pursley, S., Ashok, M., and Wilson, T. G. 2000. Intracellular localization and tissue specificity of the Methoprene-tolerant (Met) gene product in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 30, 839–845.CrossRefGoogle ScholarPubMed
Rachinsky, A. and Hartfelder, K. 1990. Corpora allata activity, a prime regulating element for caste-specific juvenile hormone titre in honey bee larvae (Apis mellifera carnica). Journal of Insect Physiology 36, 189–194.CrossRefGoogle Scholar
Rachinsky, A., Strambi, C., Strambi, A., and Hartfelder, K. 2000. Caste and metamorphosis: hemolymph titers of juvenile hormone and ecdysteroids in last instar honeybee larvae. General and Comparative Endocrinology 79, 31–38.CrossRefGoogle Scholar
Radwan, J. 1993. The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei. Behavioral Ecology and Sociobiology 33, 201–208.CrossRefGoogle Scholar
Radwan, J., Unrug, J., and Tomkins, J. L. 2002. Status-dependence and morphological trade-offs in the expression of a sexually selected character in the mite, Sancassania berlesei. Journal of Evolutionary Biology 15, 744–752.CrossRefGoogle Scholar
Raff, R. A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago, IL: University of Chicago Press.Google Scholar
Raff, R. A. and Sly, B. J. 2000. Modularity and dissociation in the evolution of gene expression territories in development. Evolution and Development 2, 102–113.CrossRefGoogle ScholarPubMed
Rankin, M. A. and Riddiford, L. M. 1977. Hormonal control of migratory flight in Oncopeltus fasciatus: the effects of the corpus cardiacum, corpus allatum and starvation on migration and reproduction. General and Comparative Endocrinology 33, 309–321.CrossRefGoogle ScholarPubMed
Rankin, S. M., Chambers, J., and Edwards, J. P. 1997. Juvenile hormone in earwigs: roles in oogenesis, mating, and maternal behaviors. Archives of Insect Biochemistry and Physiology 35, 427–442.3.0.CO;2-O>CrossRefGoogle Scholar
Rasmussen, J. L. 1994. The influence of horn and body size on the reproductive behavior of the horned rainbow scarab beetle Phanaeus difformis (Coleoptera: Scarabaeidae). Journal of Insect Behavior 7, 67–82.CrossRefGoogle Scholar
Rembold, H. 1985. Sequence of caste differentiation steps in Apis mellifera. In Watson, J. A. L., Okot-Kotber, B. M., and Noirot, C. H. (eds.) Caste Differentiation in Social Insects, pp. 347–359. New York: Pergamon Press.Google Scholar
Rembold, H., Czoppelt, C., Grüne, M., et al. 1992. Juvenile hormone titers during honey bee embryogenesis and metamorphosis. In Mauchamp, B., Couillaud, F., and Baehr, J. C. (eds.) Insect Juvenile Hormone Research, pp. 37–43. Paris: INRA.Google Scholar
Riddiford, L. M. 1994. Cellular and molecular actions of juvenile hormone. 1. General considerations and premetamorphic actions. Advances in Insect Physiology 24, 213–274.CrossRefGoogle Scholar
Riddiford, L. M. 1996. Molecular aspects of juvenile hormone action in insect metamorphosis. In Gilbert, L. I., Tata, J. R., and Atkinson, B. G. (eds.) Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, pp. 223–253. San Diego, CA: Academic Press.Google Scholar
Riddiford, L. M., Hiruma, K., Lan, Q., and Zhou, B. 1999. Regulation and role of nuclear receptors during larval molting and metamorphosis of Lepidoptera. American Zoologist 39, 736–746.CrossRefGoogle Scholar
Robinson, G. E. and Vargo, E. L. 1997. Juvenile hormone in adult eusocial Hymenoptera: gonadotropin and behavioral pacemaker. Archives of Insect Biochemistry and Physiology 35, 559–583.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Roff, D. A. 1986. The genetic basis of wing dimorphism in the sand cricket, Gryllus firmus and its relevance to the evolution of wing dimorphism in insects. Heredity 57, 221–231.CrossRefGoogle Scholar
Roff, D. A. 1994a. Evolution of dimorphic traits: effect of directional selection on heritability. Heredity 72, 36–41.CrossRefGoogle Scholar
Roff, D. A. 1994b. The evolution of dimorphic traits: predicting the genetic correlation between environments. Genetics 136, 395–401.Google Scholar
Roff, D. A. 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71, 3–35.CrossRefGoogle Scholar
Roff, D. A. 1998. Evolution of threshold traits: the balance between directional selection, drift and mutation. Heredity 80, 25–32.CrossRefGoogle Scholar
Roff, D. A., Stirling, G., and Fairbairn, D. J. 1997. The evolution of threshold traits: a quantitative genetic analysis of the physiological and life-history correlates of wing dimorphism in the sand cricket. Evolution 51, 1910–1919.CrossRefGoogle ScholarPubMed
Röseler, P.-F., Röseler, I., and Honk, C. G. J. 1981. Evidence for inhibition of corpora allata activity in workers of Bombus terrestris by a pheromone from the queen's mandibular glands. Experientia 37, 348–351.CrossRefGoogle Scholar
Rountree, D. B. and Nijhout, H. F. 1995. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). Journal of Insect Physiology 41, 987–992.CrossRefGoogle Scholar
Scharf, M. E., Wu-Scharf, D., Pittendrigh, B. R., and Bennett, G. W. 2003. Caste- and development-associated gene expression in a lower termite. Genome Biology 4, R62.CrossRefGoogle Scholar
Schlinger, B. A., Greco, C., and Bass, A. H. 1999. Aromatase activity in the hindbrain vocal control region of teleost fish: divergence among males with alternative reproductive tactics. Proceedings of the Royal Society of London B 266, 131–136.CrossRefGoogle Scholar
Schooley, D. A. and Baker, F. C. 1985. Juvenile hormone biosynthesis. In Kerkut, G. A. and Gilbert, L. I. (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 7, pp. 363–389. New York: Pergamon Press.Google Scholar
Schulz, D. J., Sullivan, J. P., and Robinson, G. E. 2002. Juvenile hormone and octopamine in the regulation of division of labor in honey bee colonies. Hormones and Behavior 42, 222–231.CrossRefGoogle ScholarPubMed
Scott, M. P., Trumbo, S. T., Neese, P. A., Bailey, W. D., and Roe, R. M. 2001. Changes in biosynthesis and degradation of juvenile hormone during breeding by burying beetles: a reproductive or social role?Journal of Insect Physiology 47, 295–302.CrossRefGoogle ScholarPubMed
Serrano, N. and O'Farrell, P. H. 1997. Limb morphogenesis: connections between patterning and growth. Current Biology 7, R186–R195.CrossRefGoogle Scholar
Shemshedini, L. and Wilson, T. G. 1990. Resistance to juvenile hormone and insect growth regulator in Drosophila is associated with altered cytosolic juvenile hormone-binding protein. Proceedings of the National Academy of Sciences of the United States of America 87, 2072–2076.CrossRefGoogle ScholarPubMed
Shingleton, A. W., Das, J., Vinicius, L., and Stern, D. L. 2005. The temporal requirements for insulin signaling during development in Drosophila. PLoS Biology 3, 1607–1617.CrossRefGoogle ScholarPubMed
Shingleton, A., Frankino, A., Flatt, T., Nijhout, H. F., and Emlen, D. J. 2007. Size and shape: the developmental regulation of static allometry in insects. BioEssays 29, 536–548.CrossRefGoogle ScholarPubMed
Simmons, L. W., Tomkins, J. L., and Hunt, J. 1999. Sperm competition games played by dimorphic male beetles. Proceedings of the Royal Society of London B 266, 145–150.CrossRefGoogle Scholar
Sinervo, B. and Svensson, E. 1998. Mechanistic and selective causes of life history trade-offs and plasticity. Oikos 83, 432–442.CrossRefGoogle Scholar
Siva-Jothy, M. T. 1987. Mate securing tactics and the cost of fighting in the Japanese horned beetle Allomyrina dichotoma L. (Scarabaeidae). Journal of Ethology 5, 165–172.CrossRefGoogle Scholar
Smith, A. G. 1978. Environmental factors influencing pupal colour determination in Lepidoptera. 1. Experiments with Papilio polytes, Papilio demoleus and Papilio polyxenes. Proceedings of the Royal Society of London B 200, 295–329.CrossRefGoogle Scholar
Starnecker, G. and Hazel, W. N. 1999. Convergent evolution of neuroendocrine control of phenotypic plasticity in pupal colour in butterflies. Proceedings of the Royal Society of London B 266, 2409–2412.CrossRefGoogle Scholar
Stern, D. L. S. 2000. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091.CrossRefGoogle ScholarPubMed
Stern, D. L. S. 2003. The Hox gene Ultrabithorax modulates the shape and size of the third leg of Drosophila by influencing diverse mechanisms. Developmental Biology 256, 355–366.CrossRefGoogle ScholarPubMed
Stern, D. L. S. and Emlen, D. J. 1999. The developmental basis for allometry in insects. Development 126, 1091–1101.Google ScholarPubMed
Strambi, A., Strambi, C., Röseler, P.-F., and Röseler, I. 1984. Simultaneous determination of juvenile hormone and ecdysteroid titers in the hemolymph of bumblebee prepupae (Bombus hypnorum and B. terrestris). General and Comparative Endocrinology 55, 83–88.CrossRefGoogle Scholar
Struhl, G. and Basler, K. 1993. Organizing activity of Wingless protein in Drosophila. Cell 72, 527–540.CrossRefGoogle ScholarPubMed
Süffert, F. 1924. Bestimmungsfaktoren des Zeichnungsmusters beim Saisondimorphismus von Araschnia levana-prorsa. Biologisches Zentralblatt 44, 173–188.Google Scholar
Sullivan, J. P., Jassim, O., Fahrbach, S. E., and Robinson, G. E. 2000. Juvenile hormone paces behavioral development in the adult worker honey bee. Hormones and Behavior 37, 1–14.CrossRefGoogle ScholarPubMed
Talbot, W. S., Swyryd, E. A., and Hogness, D. 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73, 1323–1337.CrossRefGoogle ScholarPubMed
Tallamy, D. W., Monaco, E. L., and Pesek, J. D. 2002. Hormonal control of egg dumping and guarding in the lace bug, Gargaphia solani (Hemiptera: Tingidae). Journal of Insect Behavior 15, 467–475.CrossRefGoogle Scholar
Tanaka, S., Matsuka, M., and Sakai, T. 1976. Effect of change in photoperiod on wing form in Pteronemobius taprobanensis (Orthoptera: Gryllidae). Applied Entomology and Zoology 11, 27–32.CrossRefGoogle Scholar
Tatar, M. and Yin, C.-M. 2001. Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Experimental Gerontology 36, 723–738.CrossRefGoogle ScholarPubMed
Tatar, M., Chien, S. A., and Priest, N. K. 2001a. Negligible senescence during reproductive diapause in Drosophila melanogaster. American Naturalist 158, 248–258.CrossRefGoogle Scholar
Tatar, M., Kopelman, A., Epstein, D., et al. 2001b. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110.CrossRefGoogle Scholar
Tatar, M., Bartke, A., and Antebi, A. 2003. The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351.CrossRefGoogle ScholarPubMed
Tauber, C. A. and Tauber, M. J. 1992. Phenotypic plasticity in Chrysoperla: genetic variation in the sensory mechanisms and in correlated reproductive traits. Evolution 46, 1754–1773.Google ScholarPubMed
Tobe, S. S. and Pratt, G. E. 1974. The influence of substrate concentrations on the rate of insect juvenile hormone biosynthesis by corpora allata of the desert locust in vitro. Biochemical Journal 144, 107–113.CrossRefGoogle ScholarPubMed
Tobe, S. S. and Stay, B. 1985. Structure and regulation of the corpus allatum. Advances in Insect Physiology 18, 305–432.CrossRefGoogle Scholar
Tomkins, J. L. 1999. Environmental and genetic determinants of the male forceps length dimorphism in the European earwig Forficula auricularia L. Behavioral Ecology and Sociobiology 47, 1–8.CrossRefGoogle Scholar
Tomkins, J. L. and Simmons, L. W. 2000. Sperm competition games played by dimorphic male beetles: fertilization gains with equal mating access. Proceedings of the Royal Society of London B 267, 1547–1553.CrossRefGoogle ScholarPubMed
Truman, J. W. and Riddiford, L. M. 1999. The origins of insect metamorphosis. Nature 401, 447–452.CrossRefGoogle ScholarPubMed
Truman, J. W. and Riddiford, L. M. 2002. Endocrine insights into the evolution of metamorphosis in insects. Annual Review of Entomology 47, 467–500.CrossRefGoogle ScholarPubMed
Tu, M.-P. and Tatar, M. 2003. Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell 2, 327–333.CrossRefGoogle ScholarPubMed
Ulrich, G. M. and Rembold, H. 1983. Caste-specific maturation of the endocrine system in the female honey bee larva. Cell and Tissue Research 230, 49–55.CrossRefGoogle ScholarPubMed
Uvarov, B. P. 1921. A revision of the genus Locusta L. (= Pachytylus Fieb.), with a new theory as to periodicity and migrations of locusts. Bulletin of Entomological Research 12, 135–163.CrossRefGoogle Scholar
Velthius, H. H. W. 1976. Environmental, genetic and endocrine influences in stingless bee caste determination. In Lüscher, M. (ed.) Phase and Caste Determination in Insects: Endocrine Aspects, pp. 35–53. New York: Pergamon Press.Google Scholar
Wagner, G. P. 1996. Homologues, natural kinds, and the evolution of modularity. American Zoologist 36, 36–43.CrossRefGoogle Scholar
Wang, D.-I. 1965. Growth rates of young queen and worker honeybee larvae. Journal of Apicultural Research 4, 3–5.CrossRefGoogle Scholar
Weatherbee, S. D., Nijhout, H. F., Grunert, L. W., et al. 1999. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Current Biology 9, 109–115.CrossRefGoogle ScholarPubMed
Weinkove, D., Neufeld, T., Twardzik, T., Waterfield, M., and Leevers, S. J. 1999. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class IA phosphinositide 3-kinase and its adaptor. Current Biology 9, 1019–1029.CrossRefGoogle Scholar
Weismann, A. 1875. Studien zur Deszendenztheorie vol., 1, Über den Saisondimorphismus der Schmetterlinge. Leipzig, Germany: Engelmann.Google Scholar
West, D. A., Snelling, W. N., and Herbeck, T. A. 1972. Pupal color dimorphism and its environmental control in Papilio polyxenes asterias Stoll (Lep. Papilionidae). Journal of the New York Entomological Society 80, 205–211.Google Scholar
West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics 20, 249–278.CrossRefGoogle Scholar
West-Eberhard, M. J. 1992. Behavior and evolution. In Grant, P. R. and Horn, H. S. (eds.) Molds, Molecules and Metazoa: Growing Points in Evolutionary Biology, pp. 57–75. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. Oxford, UK: Oxford University Press.Google Scholar
Wheeler, D. E. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist 138, 1218–1238.CrossRefGoogle Scholar
Wheeler, D. E. and Nijhout, H. F. 1981. Soldier determination in ants: new role for juvenile hormone. Science 213, 361–363.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. 1940. Local and general factors in the development of “pattern” in Rhodnius prolixus (Hemiptera). Journal of Experimental Biology 17, 180–200.Google Scholar
Wiklund, C. 1972. Pupal colour polymorphism in Papilio machaon L. in response to wavelength of light. Naturwissenschaften 59, 219.CrossRefGoogle Scholar
Wilde, J. de 1985. Extrinsic control of caste differentiation in the honey bee (Apis mellifera L.) and in other Apidae. In Watson, J. A. L., Okot-Kotber, B. M., and Noirot, C. H. (eds.) Caste Differentiation in Social Insects, pp. 361–369. New York: Pergamon Press.Google Scholar
Wirtz, P. 1973. Differentiation in the honeybee larva. Mededelingen van de Landbouwhogeschool Wageningen 73–75, 1–66.Google Scholar
Zera, A. J. and Denno, R. F. 1997. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology 42, 207–230.CrossRefGoogle ScholarPubMed
Zera, A. J. and Harshman, L. G. 2001. The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32, 95–126.CrossRefGoogle Scholar
Zera, A. J. and Holtmeier, C. L. 1992. In vivo and in vitro degradation of juvenile hormone-III in presumptive long-winged and short-winged Gryllus rubens. Journal of Insect Physiology 38, 61–74.CrossRefGoogle Scholar
Zera, A. J. and Tiebel, K. C. 1988. Brachypterizing effect of group rearing, juvenile hormone III and methoprene in the wing-dimorphic cricket, Gryllus rubens. Journal of Insect Physiology 34, 489–498.CrossRefGoogle Scholar
Zera, A. J. and Tiebel, K. C. 1989. Differences in juvenile hormone esterase activity between presumptive macropterous and brachypterous Gryllus rubens: implications for the hormonal control of wing polymorphism. Journal of Insect Physiology 35, 7–17.CrossRefGoogle Scholar
Zera, A. J. and Tobe, S. S. 1990. Juvenile hormone-III biosynthesis in presumptive long-winged and short-winged Gryllus rubens: implications for the endocrine regulation of wing dimorphism. Journal of Insect Physiology 36, 271–280.CrossRefGoogle Scholar
Zera, A. J. and Zhang, C. 1995. Evolutionary endocrinology of juvenile hormone esterase in Gryllus assimilis: direct and correlated responses to selection. Genetics 141, 1125–1134.Google Scholar
Zera, A. J., Strambi, C., Tiebel, K. C., Strambi, A., and Rankin, M. A. 1989. Juvenile hormone and ecdysteroid titers during critical periods of wing determination in Gryllus rubens. Journal of Insect Physiology 35, 501–511.CrossRefGoogle Scholar
Zuk, M. and Simmons, L. W. 1997. Reproductive strategies of the crickets (Orthoptera: Gryllidae). In Choe, J. C. and Crespi, B. J. (eds.) Mating Systems in Insects and Arachnids, pp. 89–109. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×