Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T05:49:07.865Z Has data issue: false hasContentIssue false

7 - Quantitative analysis of animal movements in congregations

from Part two - Analysis

Published online by Cambridge University Press:  01 June 2010

Julia K. Parrish
Affiliation:
University of Washington
William M. Hamner
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Most animals spend part or all of their life in groups (Pulliam and Caraco 1984). Gregarious behavior can strongly affect individual fitness, as well as spatiotemporal dynamics of populations (Allee 1931; Hamilton 1971; Thornhill & Alcock 1983; Taylor 1986; Part IV of this book). Quantitative analyses of gregarious movement behaviors, however, are rare (Turchin 1989a). In population ecology, for example, most theoretical analyses assume a contagious, or clumped distribution of organisms (often summarized by a single number, e.g. the variance to mean ratio), without attempting to examine behavioral mechanisms by which organisms clump together.

This bias is partly due to the intrinsic difficulty of studying movement, and partly to our limited understanding of how individuals interact within aggregations. It is often difficult to collect data on the spacing and movements of individuals in aggregations, especially in large three-dimensional aggregations such as bird flocks, fish schools, and insect swarms. Recent advances in instrumentation (reviewed in Part I) are beginning to address this problem. However, even when data are available, innovative methods of analysis are needed to test hypotheses about how aggregations are formed, and to build dynamical models of aggregation structure.

Movement by organisms is most generally defined as a change in an organism's spatial position over time. Thus, by its nature, the process of movement involves two scales – a temporal and a spatial. Because the description of spatial position typically involves two or three coordinates, a description and an analysis of movement has to be multidimensional (3-D for most terrestrial organisms, and 4-D for aquatic, aerial, arboreal, etc., organisms).

Type
Chapter
Information
Animal Groups in Three Dimensions
How Species Aggregate
, pp. 107 - 112
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×