Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-08T15:34:29.762Z Has data issue: false hasContentIssue false

13 - Can Smart Villages Help to Stem Biodiversity Loss?

Published online by Cambridge University Press:  19 August 2019

Partha Dasgupta
Affiliation:
University of Cambridge
Peter Raven
Affiliation:
Missouri Botanical Garden
Anna McIvor
Affiliation:
University of Cambridge
Get access

Summary

Urban areas generate 80 per cent of global GDP (CBD, 1992; Ammann, 2016; Gressel, 2007) and no country has developed without urbanisation, according to Paul Collier (Dobbs et al., 2012; Collier, 2015). Just 2 per cent of the world’s population was urbanised in 1800; the figure passed 50 per cent by 2008, and on current trends it will reach 60 per cent by 2030. Virtually all this urban future growth will take place in developing countries, emulating Western Europe and North America, so that by 2025 it is estimated that 235 million households earning more than US$20,000 pa ppp will live in cities in the emerging economies, compared to 210 million in cities in the developed regions (Department for Business, Innovation and Skills, 2013). Cities are able to harness economies of scale and specialisation through the economies of agglomeration, but they consume 75 per cent of the world’s energy and are responsible for up to 70 per cent of global greenhouse gases (GHGs) (Satterthwaite, 2008).

Type
Chapter
Information
Biological Extinction
New Perspectives
, pp. 358 - 404
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

African Orphan Crops Consortium. 2018. Healthy Africa through Nutritious, Diverse and Local Food Crops. http://africanorphancrops.org/.Google Scholar
Alessandro, N., Manzo, A., Veronesi, F. & Rosellini, D. 2014. An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34: 7788.Google Scholar
Ammann, K. 2008. Feature: Integrated farming: Why organic farmers should use transgenic crops. New Biotechnology, 25: 101107.Google Scholar
Ammann, K. 2009. Feature: Why farming with high tech methods should integrate elements of organic agriculture. New Biotechnology, 25: 378388.CrossRefGoogle ScholarPubMed
Ammann, K. 2012. Advancing the cause in emerging economies. In Bennett, D. J. & Jennings, R. C. (Eds.), Successful Agricultural Innovation in Emerging Economies: 400417. Cambridge: Cambridge University Press.Google Scholar
Ammann, K. 2016. The Debate on Biodiversity and Biotechnology. ASK-Force Contribution 11. www.ask-force.org/web/AF-11-Biodiversity/AF-11-Biodiversity-Agriculture-20160526.pdf.Google Scholar
Ammann, K. & Papazova Ammann, B. 2004. Factors influencing public policy development in agricultural biotechnology. In Christou, P. & Klee, H. (Eds.), Handbook of Plant Biotechnology; Part 9: Risk Assessment of Transgenic Crops. Hoboken, NJ: John Wiley.Google Scholar
Areal, F. J. 2016. Benefits of Bt maize in Spain (1998–2015). Benefits from an economic, social and environmental viewpoint. Madrid, Spain: Fundacion Antama. www.europabio.org/sites/default/files/2016%20Spanish%20benefits%20report-%201998–2015%20-%20english.pdf.Google Scholar
Attigah, B. & Mayer-Tasch, L. 2013. The impact of electricity access on economic development – A literature review. In Mayer-Tasch, L., Mukherjee, M. & Reiche, K. (Eds.), Productive Use of Energy (PRODUSE): Measuring Impacts of Electrification on Micro-Enterprises in Sub-Saharan Africa. Eschborn, Germany: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.Google Scholar
Barasa, M. 2015. A way of life: Energy provision in Africa. In Heap, R. B. (Ed.), Smart Villages: New Thinking for Off-Grid Communities Worldwide: 1320. Cambridge: Banson.Google Scholar
Beyer, P. 2010. Golden rice and ‘golden’ crops for human nutrition. New Biotechnology, 27: 478481Google Scholar
Blancke, S., Van Breusegem, F., De Jaeger, G., Braeckman, J. & Van Montagu, M. 2015. Fatal attraction: The intuitive appeal of GMO opposition. Trends in Plant Science, 20(7): 414418.Google Scholar
Bogdanski, A. 2012. Integrated food–energy systems for climate-smart agriculture. Agriculture & Food Security, 1(1): 9.CrossRefGoogle Scholar
Bogdanski, A., Dubois, O. & Chuluunbaatar, D. 2010a. Integrated Food Energy Systems – Project Assessment in China and Vietnam, 11–29 October. Climate, Energy and Tenure Division, Food and Agriculture Organization of the United Nations, Rome. www.fao.org/energy/33467-0140d2e14b981e9923be4670c73e05c95.pdf.Google Scholar
Bogdanski, A., Dubois, O., Jamieson, C. & Krell, R. 2010b. Making Integrated Food/Energy Systems Work for People and Climate – An Overview. Environment and Natural Sources Management Working Paper 45, Food and Agriculture Organization of the United Nations, Rome. www.fao.org/docrep/013/i2044e/i2044e00.htm.Google Scholar
Bren d’Amour, C., Reitsma, F., Baiocchi, G., Barthel, S., Guneralp, B., Erb, K.-H., Haberl, H., Creutzig, F. & Seto, K. C. 2017. Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences, 114(34): 89398944.CrossRefGoogle ScholarPubMed
Broekgaarden, C., Snoeren, T. A., Dicke, M. & Vosman, B. 2011. Exploiting natural variation to identify insect‐resistance genes. Plant Biotechnology Journal, 9(8): 819825.Google Scholar
Brookes, G. & Barfoot, P. 2017. GM Crops: Global Socio-economic and Environmental Impacts 1996–2015. United Kingdom: PG Economics Ltd.Google Scholar
Canales, C. 2017. Mixed farming systems and global food security. Biosciences for Farming in Africa (blog), May 25. http://b4fa.org/mixed-farming-systems-global-food-security/.Google Scholar
Canales, C. & Jones, B. 2016. Livestock Breeding and Other Advances in Animal, Insect and Fish Genetic Research for Africa, The Genetics for Africa – Strategies and Opportunities project workshop report, ILRI, Nairobi, September 10–11. London: Science Technology and Innovation for Development Ltd.Google Scholar
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D. & Wardle, D. A. 2012. Biodiversity loss and its impact on humanity. Nature, 486(7401): 5967.Google Scholar
Carpenter, J. E. 2011. Impact of GM crops on biodiversity. GM Crops, 2(1): 723.Google Scholar
CBD. 1992. Convention on Biological Diversity. www.cbd.int/convention/text/.Google Scholar
Chassy, B. M. 2010. Food safety risks and consumer health. New Biotechnology, 27(5): 534544.CrossRefGoogle ScholarPubMed
Chavan, S. B., Handa, A. K. & Toky, P. 2016. Innovative Agroforestry for Environmental Security in India. World Agriculture No. 1613, September. www.world-agriculture.net/article/innovative-agroforestry-for-environmental-security-in-india.Google Scholar
Chen, X., Vosman, B., Visser, R. G., van der Vlugt, R. A. & Broekgaarden, C. 2012. High throughput phenotyping for aphid resistance in large plant collections. Plant Methods, 8(1): 33.CrossRefGoogle ScholarPubMed
CISL. 2016. Biodiversity and Ecosystem Services in Corporate Natural Capital Accounting: Synthesis Report. Cambridge: Cambridge Institute for Sustainability Leadership.Google Scholar
Clancy, E. & Vernooy, R. 2016. Realizing Farmers’ Rights through Community-Based Agricultural Biodiversity Management: 1–8. Rome, Italy: Biodiversity International.Google Scholar
Collier, P. 2008. The Bottom Billion. Oxford: Oxford University Press.Google Scholar
Collier, P. 2015. Achieving Sustainability: Should People Be Fitted to Policies, or Policies to People? Centre for Corporate Responsibility and Sustainability, University of Zurich, March 19. www.ccrs.uzh.ch/Veranstaltungen.html.Google Scholar
Dale, B. E., Anderson, J. E., Brown, R. C., Csonka, S., Dale, V. H., Herwick, G., Jackson, R. D., Jordan, N., Kaffka, S., Kline, K. L., Lynd, L. R., Malmstrom, C., Ong, R. G., Richard, T. L., Taylor, C. & Wang, M. Q. 2014. Take a closer look: Biofuels can support environmental, economic and social goals. Environmental Science & Technology, 48(13): 72007203.Google Scholar
Dasgupta, P. 2001. Human Well-Being and the Natural Environment. Oxford: Oxford University Press.Google Scholar
Department for Business, Innovation and Skills. 2013. Smart Cities: Background Paper. London: Department for Business, Innovation and Skills, UK Government. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/246019/bis-13–1209-smart-cities-background-paper-digital.pdf.Google Scholar
de Ponti, T., Rijk, B. & van Ittersum, M. K. 2012. The crop yield gap between organic and conventional agriculture. Agricultural Systems, 108: 19.CrossRefGoogle Scholar
Dileepkumar, G. 2014. Knowledge to the poor revolution taking high-end scientific knowledge to the farm fields through innovative ICT tools and knowledge sharing approaches for a food secure future. Proceedings of the Winter School on Livestock Based Livelihood Options: Current Status, Emerging Issues and Future Scenario in Combating Agrarian Crisis, New Delhi, India, November 7. http://oar.icrisat.org/8712/1/dileep_article.pdf.Google Scholar
Dobbs, R., Remes, J., Manyika, J., Roxburgh, C., Smit, S. & Schaer, F. 2012. Urban World: Cities and the Rise of the Consuming Class. McKinsey Global Institute Report. www.mckinsey.com/featured-insights/urbanization/urban-world-cities-and-the-rise-of-the-consuming-class.Google Scholar
Dushku, A., Brown, S., Pearson, T., Shoch, D. & Khare, A. 2007. Remote sensing. In Farming with Nature: The Science and Practice of Ecoagriculture: 250264. Washington, DC: Island Press.Google Scholar
EASAC. 2017. Multi-functionality and Sustainability in the European Union’s Forests. EASAC Policy Report 32, April.Google Scholar
EC. 2016. Science for Environment Policy, 2016. In Synthetic Biology and Biodiversity. Future Brief 15. Produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol. http://ec.europa.eu/science-environment-policy.Google Scholar
Ehrlich, P. R. & Harte, J. 2015. Opinion: To feed the world in 2050 will require a global revolution. Proceedings of the National Academy of Sciences, 112(48): 1474314744.Google Scholar
El Bassam, N. 2010. Integrated energy farming for rural development and poverty alleviation. In Resource Management towards Sustainable Agriculture and Development: 252262. Jodhpur, India: Agribios International. www.ifeed.org/pdf/Publication_IEF-for-Rural-Development-and-Poverty-Alleviation.pdf.Google Scholar
Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., King, D., Lindsay, K. F., Mitchell, S. & Tischendorf, L. 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems & Environment, 200: 219234.Google Scholar
FAO. 2010. Agricultural biotechnologies in developing countries: Options and opportunities in crops, forestry, livestock, fisheries and agro-industry to face the challenges of food insecurity and climate change (ABDC-10). Current status and options for crop biotechnologies in developing countries. FAO International Technical Conference, Guadalajar, Mexico, March 1–4.Google Scholar
FAO 2012. State of the World’s Forests (2012). www.fao.org/docrep/016/i3010e/i3010e.pdf.Google Scholar
FAO 2015. World Deforestation Slows Down as More Forests Are Better Managed (2015). www.fao.org/news/story/en/item/326911/icode/.Google Scholar
Fawcett, R. & Towery, D. 2002. Conservation Tillage and Plant Biotechnology: How New Technologies Can Improve the Environment by Reducing the Need to Plow. Conservation Technology Information Center. www.ctic.org/media/pdf/Biotech2003.pdf.Google Scholar
Fernández, J., Toro, M. A., Gómez-Romano, F. & Villanueva, B. 2016. The use of genomic information can enhance the efficiency of conservation programs. Animal Frontiers, 6(1): 5964.Google Scholar
Freese, B. 2016. How gene editing will change agriculture. Successful Farming. www.agriculture.com/technology/how-gene-editing-will-change-agriculture.Google Scholar
Fu, Z. Q. & Dong, X. 2013. Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64(1): 839863.Google Scholar
Gabriel, D., Sait, S. M., Hodgson, J. A., Schmutz, U., Kunin, W. E. & Benton, T. G. 2010. Scale matters: The impact of organic farming on biodiversity at different spatial scales. Ecology Letters, 13(7): 858869.Google Scholar
Gebreyes, W. A., Dupouy-Camet, J., Newport, M. J., Oliveira, C. J. B., Schlesinger, L. S., Saif, Y. M., et al. 2014. The Global One Health Paradigm: Challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Neglected Tropical Diseases 8(11): e3257.Google Scholar
Global Alliance for Clean Cookstoves. 2016. 2016 Progress Report. http://cleancookstoves.org/resources/reports/2016progress.html.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. & Toulmin, C. 2010. Food security: The challenge of feeding 9 billion people. Science, 327(5967): 812818.Google Scholar
González, C., Schiek, B., Mwendia, S. & Prager, S. D. 2016. Improved Forages and Milk Production in East Africa. A case study in the series: Economic foresight for understanding the role of investments in agriculture for the global food system. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).Google Scholar
Gressel, J. 2007. Genetic Glass Ceilings: Transgenics for Crop Biodiversity. Baltimore: Johns Hopkins University Press.Google Scholar
Guruswamy, L. 2011. Energy poverty. Annual Review of Environment and Resources, 36(1): 139161.Google Scholar
Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A. & Nolan, T. 2015. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34: 7883.Google Scholar
Hassanali, A., Herren, H., Khan, Z. R., Pickett, J. A. & Woodcock, C. M. 2008. Integrated pest management: The push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society B, 363: 611621.Google Scholar
Heald, P. J. & Chapman, S. 2011. Veggie Tales: Pernicious Myths about Patents, Innovation, and Crop Diversity in the Twentieth Century. Illinois Program in Law, Behavior and Social Science Paper No. LBSS11-34. Illinois Public Law Research Paper No. 11-03. http://ssrn.com/paper=1928920.Google Scholar
Heap, R. B. 2016a. Is Biomass a Sustainable Energy Solution for Off-Grid Villages in Developing Countries? http://e4sv.org/biomass-sustainable-energy-solution-off-grid-villages-developing-countries/.Google Scholar
Heap, R. B. 2016b. How can genetically-modified (GM crops) help to feed the world? In Bicak, J. (Ed.), On Stars, Oceans and Mankind, vol. 99: 179243. Prague: Learned Society of Czech Republic. www.learned.cz/userfiles/pdf/publikace/bicak-text.pdf.Google Scholar
Holmes, J. & van Gevelt, T. 2015. Energy for development. In Heap, R. B. (Ed.), Smart Villages: New Thinking for Off-Grid Communities Worldwide: 1320. Cambridge: Banson.Google Scholar
Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L. & O’Connor, M. I. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486: 105108.Google Scholar
Hunter, P. 2016. Plant microbiomes and sustainable agriculture. EMBO Reports, 17(12): 16961699.CrossRefGoogle ScholarPubMed
Hurley-Depret, M. 2016. Terrat, Tanzania: A ‘Smart Village’. http://e4sv.org/terrat-tanzania-smart-village/.Google Scholar
IFAD. 2016. Rural Development Report 2016; Fostering Inclusive Rural Transformation. www.ifad.org/web/rdr/reports.Google Scholar
Kaphengst, T., Davis, M., Gerstetter, C., Klaas, K., McGlade, K. & Naumann, S. 2014. Quality of Life, Wellbeing and Biodiversity: The Role of Biodiversity in Future Development. Final Report submitted to Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Berlin: Ecologic Institute.Google Scholar
Kathage, J., Gómez-Barbero, M. & Rodríguez-Cerezo, E. 2016. Framework for Assessing the Socio-economic Impacts of Bt Maize Cultivation. European GMO Socio-Economics Bureau 2nd Reference Document. JRC Technical Report, EUR 28129 EN.Google Scholar
Khan, Z. R., Midega, C. A. O., Amudavi, D. M., Hassanali, A. & Pickett, J. A. 2008. On-farm evaluation of the ‘push–pull’ technology for the control of stemborers and Striga weed on maize in western Kenya. Field Crops Research, 106(3): 224233.Google Scholar
Kline, K. L., Msangi, S., Dale, V. H., Woods, J., Souza, Glaucia M., Osseweijer, P., Clancy, J. S., Hilbert, J. A., Johnson, F. X., McDonnell, P. C. & Mugera, H. K. 2017. Reconciling food security and bioenergy: Priorities for action. GCB Bioenergy, 9(3): 557576.Google Scholar
Klümper, W. & Qaim, M. 2014. A meta-analysis of the impacts of genetically modified crops. PLoS One, 9(11): e111629.Google Scholar
Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K. & Long, S. P. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314): 857861.Google Scholar
Lawton, J. H. & May, R. M. (Eds.). 1994. Extinction Rates. Oxford: Oxford University Press.Google Scholar
Leonard, D. & Haddad, L. 2008. Assessing the Policy Prescriptions in The Bottom Billion. IDS in Focus: research and analysis from the Institute of Development Studies, Sussex. www.ids.ac.uk/files/NewNo1-Overview-web.pdf.Google Scholar
Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A. D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C. B., Glick, H. B., Hengeveld, G. M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A. C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J. V., Chen, H. Y. H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, E. I., Salas, C., Lee, E., Lee, B., Kim, H. S., Bruelheide, H., Coomes, D. A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E. B., Neldner, V. J., Ngugi, M. R., Baraloto, C., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A. M., Peri, P. L., Gonmadje, C., Marthy, W., O’Brien, T., Martin, E. H., Marshall, A. R., Rovero, F., Bitariho, R., Niklaus, P. A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N. L., Ferreira, L. V., Odeke, D. E., Vasquez, R. M., Lewis, S. L. & Reich, P. B. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science, 354(6309).Google Scholar
Loomans, A. 2007. Regulation of Invertebrate Biological Control Agents in Europe: Review and Recommendations in Its Pursuit of a Harmonised Regulatory System. Report EU project REBECA [Regulation of Biological Control Agents].Google Scholar
Lorentz Biopanel Statement. 2016. Statement of the Lorentz BioPanel. www.lorentzcenter.nl/lc/web/2016/780/report.pdf.Google Scholar
Mace, G. M. 2014. Whose conservation? Science, 345(6204): 15581560.Google Scholar
Marsh, T. L., Yoder, J., Deboch, T., McElwain, T. F. & Palmer, G. H. 2016. Livestock vaccinations translate into increased human capital and school attendance by girls. Science Advances, 2(12): e1601410.Google Scholar
McFarland, W., Whitley, S. & Kissinger, G. 2015. Subsidies to Key Commodities Driving Forest Loss: Implications for Private Climate Finance. London: Overseas Development Institute. www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9577.pdf.Google Scholar
Morris, A. L., Guégan, J.-F., Andreou, D., Marsollier, L., Carolan, K., Le Croller, M., Sanhueza, D. & Gozlan, R. E. 2016. Deforestation-driven food-web collapse linked to emerging tropical infectious disease, Mycobacterium ulcerans. Science Advances, 2(12): e1600387.Google Scholar
Morris, E. J. 2011. Modern biotechnology: Potential contribution and challenges for sustainable food production in sub-Saharan Africa. Sustainability, 3(6): 809822.Google Scholar
Ozturk, I. 2016. Biofuel, sustainability, and forest indicators’ nexus in the panel generalized method of moments estimation: Evidence from 12 developed and developing countries. Biofuels, Bioproducts and Biorefining, 10(2): 150163.Google Scholar
Ozturk, I. & Bilgili, F. 2015. Economic growth and biomass consumption nexus: Dynamic panel analysis for sub-Sahara African countries. Applied Energy, 137: 110116.CrossRefGoogle Scholar
Parrott, W. 2010. Genetically modified myths and realities. New Biotechnology, 27(5): 545551.CrossRefGoogle ScholarPubMed
PAS. 2009. Transgenic Plants for Food Security in the Context of Development. PAS Study Week, Vatican City, May 15–19. www.casinapioiv.va/content/dam/accademia/pdf/multilanguagestatement.pdf.Google Scholar
Pereira, M. G., Freitas, M. A. V. & da Silva, N. F. 2011. The challenge of energy poverty: Brazilian case study. Energy Policy, 39(1): 167175.Google Scholar
Pickett, J. A., Woodcock, C. M., Midega, C. A. O. & Khan, Z. R. 2014. Push–pull farming systems. Current Opinion in Biotechnology, 26: 125132.Google Scholar
Ponisio, L. C., M’Gonigle, L. K., Mace, K. C., Palomino, J., de Valpine, P. & Kremen, C. 2015. Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society B, 282: 20141396.Google Scholar
Pope Francis, . 2015. Laudato Si’: On Care for Our Common Home [Encyclical]. Vatican City, Italy: Vatican Press. http://w2.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html.Google Scholar
Potapov, P., Hansen, M. C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., Zhuravleva, I., Komarova, A., Minnemeyer, S. & Esipova, E. 2017. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science Advances, 3(1): e1600821.Google Scholar
Potrykus, I. 2010. Constraints to biotechnology introduction for poverty alleviation. New Biotechnology, 27(5): 447448.Google Scholar
Potrykus, I. & Ammann, K. (Eds.). 2010. Transgenic plants for food security in the context of development. New Biotechnology, 27(5).Google Scholar
Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D. E. & Kropp, J. P. 2015. Closing yield gaps: How sustainable can we be? PLoS One, 10(6): e0129487.Google Scholar
Quétier, F. 2016. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. Plant Science, 242: 6576.Google Scholar
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. 2012. Recent patterns of crop yield growth and stagnation. Nature Communications, 3: 1293.Google Scholar
Redford, K. H., Adams, W. & Mace, G. M. 2013. Synthetic biology and conservation of nature: Wicked problems and wicked solutions. PLoS Biology, 11(4): e1001530.Google Scholar
Resende, D. C., Mendes, S. M., Marucci, R. C., Silva, A. d. C., Campanha, M. M. & Waquil, J. M. 2016. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Revista Brasileira de Entomologia, 60: 8293.Google Scholar
Robinson, T. P. & Pozzi, F. 2011. Mapping Supply and Demand for Animal-Source Foods to 2030. FAO Animal Production and Health Working Paper 2. Rome: Food and Agriculture Organization. www.fao.org/docrep/014/i2425e/i2425e00.pdf.Google Scholar
Rodriguez, D. 2011. New Holland Agriculture’s Clean Energy Leader Strategy. www.climateactionprogramme.org/press-releases/new_hollands_clean_energy_leader_strategy.Google Scholar
Royal Society. 2009. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. RS Policy Document 11/09. London: The Royal Society.Google Scholar
Royal Society 2015. Trends in Synthetic Biology and Gain of Function and Regulatory Implications. Sackler Forum, Royal Society, DES 4538. London: The Royal Society.Google Scholar
Satterthwaite, D. 2008. Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environment and Urbanization, 20(2): 539549.Google Scholar
Scherr, S. J. & McNeely, J. A. 2008. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491): 477494.Google Scholar
SCOPE. 2015. Bioenergy and sustainability: Bridging the gaps. In Souza, G. M., Victoria, R., Joly, C. & Verdade, L. (Eds.), SCOPE Report 72. Paris. http://bioenfapesp.org/scopebioenergy.Google Scholar
Seufert, V., Ramankutty, N. & Foley, J. A. 2012. Comparing the yields of organic and conventional agriculture. Nature, 485: 229232.Google Scholar
Seward, P. 2015. Farm Input Promotions Africa Ltd. http://fipsafrica.org/.Google Scholar
Shultz, D. 2016. Should we bring extinct species back from the dead? Science: Biology, Plants and Animals. www.sciencemag.org/news/2016/09/should-we-bring-extinct-species-back-dead.Google Scholar
Smart Villages Initiative. 2015a. Smart Villages: The Gender and Energy Context. http://e4sv.org/wp-content/uploads/2015/08/03-Technical-Report.pdf.Google Scholar
Smart Villages Initiative 2015b. Sustainable Dissemination of Improved Cookstoves: Lessons from Southeast Asia. http://e4sv.org/wp-content/uploads/2016/03/WR13-Sustainable-Dissemination-of-Improved-Cookstoves-Lessons.pdf.Google Scholar
Smart Villages Initiative 2015c. Smart Villages in Southeast Asia: Kuching Workshop Report (2015). http://e4sv.org/wp-content/uploads/2015/06/04-Workshop-Report-low-res.pdf.Google Scholar
Smart Villages Initiative 2015d. South Asia Media Dialogue: Colombo Workshop Report. http://e4sv.org/wp-content/uploads/2016/04/WR12-South-Asia-Media-Dialogue-Colombo-Workshop-Report-DRAFT.pdf.Google Scholar
Sole, R. V. & Montoya, J. M. 2006. Ecological network meltdown from habitat loss and fragmentation. In Pascual, M. & Dunne, J. A. (Eds.), Ecological Networks: Linking Structure to Dynamics in Food Webs: 305323. Amsterdam: Elsevier.Google Scholar
Sun Moksha. 2015. Smart Village NanogridTM. www.nanosoftremote.com/ChhotkeiSmartNanogrid/.Google Scholar
Swanson, T. 1999. Conserving global biological diversity by encouraging alternative development paths: Can development coexist with diversity? Biodiversity & Conservation, 8(1): 2944.Google Scholar
Trace, S. 2016. Rethink, Retool, Reboot: Technology as If People and Planet Mattered. Rugby, UK: Practical Action. www.developmentbookshelf.com/doi/pdf/10.3362/9781780449043.Google Scholar
Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A. & Bengtsson, J. 2014. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. Journal of Applied Ecology, 51(3): 746755.Google Scholar
UN. 1987. Report of the World Commission on Environment and Development: Our Common Future. Annex to document A/42/427, Development and International Co-operation: Environment. www.ask-force.org/web/Sustainability/Brundtland-Our-Common-Future-1987-2008.pdf.Google Scholar
UNA-UK. 2015. Global Development Goals: Leaving No One Behind. www.una.org.uk/global-development-goals-leaving-no-one-behind.Google Scholar
UNEP. 1997. Global Environment Outlook-1 (GEO1). United Nations Environment Programme. Global State of the Environment Report 1997. www.grid.unep.ch/geo1/.Google Scholar
van den Oever-van den Elsen, F., Lucatti, A. F., van Heusden, S., Broekgaarden, C., Mumm, R., Dicke, M. & Vosman, B. 2016. Quantitative resistance against Bemisia tabaci in Solanum pennellii: Genetics and metabolomics. Journal of Integrative Plant Biology, 58(4): 397412.Google Scholar
van de Wouw, M., van Hintum, T., Kik, C., van Treuren, R. & Visser, B. 2010. Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theoretical and Applied Genetics, 120(6): 12411252.Google Scholar
van Gevelt, T., Holmes, J., Marcheselli, M., Safdar, T., Price, M. & Heap, B. 2016. Energy for off-grid villages: The Smart Villages Initiative. In Bicak, J. (Ed.), On Stars, Oceans and Mankind, vol. 99: 179243. Prague: Learned Society of Czech Republic. www.learned.cz/userfiles/pdf/publikace/bicak-text.pdf.Google Scholar
van Ittersum, M. K., van Bussel, L. G. J., Wolf, J., Grassini, P., van Wart, J., Guilpart, N., Claessens, L., de Groot, H., Wiebe, K., Mason-D’Croz, D., Yang, H., Boogaard, H., van Oort, P. A. J., van Loon, M. P., Saito, K., Adimo, O., Adjei-Nsiah, S., Agali, A., Bala, A., Chikowo, R., Kaizzi, K., Kouressy, M., Makoi, J. H. J. R., Ouattara, K., Tesfaye, K. & Cassman, K. G. 2016. Can sub-Saharan Africa feed itself? Proceedings of the National Academy of Sciences, 113(52): 1496414969.Google Scholar
Vianello, M. 2016. A Review of Cooking Systems for Humanitarian Settings. Toolkit for the Moving Energy Initiative. London: Royal Institute of International Affairs. www.chathamhouse.org/sites/default/files/publications/research/2016-05-19-mei-review-of-cooking-systems-vianello.pdf.Google Scholar
Vitale, J., Glick, H., Greenplate, J. & Traore, O. 2008. The economic impacts of second generation Bt cotton in West Africa: Empirical evidence from Burkina Faso. International Journal of Biotechnology, 10(2–3): 167183.Google Scholar
von Burg, S., van Veen, F. J. F., Álvarez-Alfageme, F. & Romeis, J. 2011. Aphid–parasitoid community structure on genetically modified wheat. Biology Letters, 7(3): 387391.Google Scholar
Weindl, I., Lotze-Campen, H., Popp, A., Müller, C., Havlik, P., Herrero, M., Schmitz, S. & Rolinski, S. 2015. Livestock in a changing climate: Production system transitions as an adaptation strategy for agriculture. Environmental Research Letters, 10(9): 094021.CrossRefGoogle Scholar
Wolfenbarger, L. L., Naranjo, S. E., Lundgren, J. G., Bitzer, R. J. & Watrud, L. S. 2008. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS One, 3(5): e2118.Google Scholar
Wunder, S., Engel, S. & Pagiola, S. 2008. Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecological Economics, 65(4): 834852.Google Scholar
WWF. 2012. Living Planet Report 2012: Biodiversity, Biocapacity and Better Choices. www.worldwildlife.org/publications/living-planet-report-2012-biodiversity-biocapacity-and-better-choices.Google Scholar
WWF 2016a. Living Planet Report 2016: Risk and Resilience in a New Era. Gland, Switzerland: WWF International.Google Scholar
WWF 2016b. Conserving Forests to Combat Climate Change: What Is REDD+, How Was It Created and Where Is It Going? Washington, DC: World Wildlife Fund. www.worldwildlife.org/publications/conserving-forests-to-combat-climate-change.Google Scholar
Zaman, T. 2016. It Is Not a Village but People: Long Lamai, a Case Study of a Smart Village. https://e4sv.org/not-village-people-long-lamai-case-study-smart-village/.Google Scholar
Zarea, M. J., Ghalavand, A., Goltapeh, E. M., Rejali, F. & Zamaniyan, M. 2009. Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia, 52(4): 223235.Google Scholar
Zhang, W., Cao, G., Li, X., Zhang, H., Wang, C., Liu, Q., Chen, X., Cui, Z., Shen, J., Jiang, R., Mi, G., Miao, Y., Zhang, F. & Dou, Z. 2016. Closing yield gaps in China by empowering smallholder farmers. Nature, 537: 671674.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×