Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T22:00:24.898Z Has data issue: false hasContentIssue false

7 - Gene–Lifestyle Interactions in Longevity

from Part I - Biomedical Aspects

Published online by Cambridge University Press:  10 January 2019

Rocío Fernández-Ballesteros
Affiliation:
Universidad Autónoma de Madrid
Athanase Benetos
Affiliation:
Université de Lorraine and Institut national de la santé et de la recherche médicale (INSERM) Nancy
Jean-Marie Robine
Affiliation:
INSERM
Get access

Summary

Individuals exposed to the same environmental factor show variation in responses and health outcomes. Such observations could be caused by chance or by gene-environment interactions – where gene variants modulate the effect of environmental factors on morbidity, aging and mortality or vice-versa. Twin and family studies have shown that lifespan is moderately heritable and that the chance of survival at the highest ages might be increasingly influenced by genetic factors. However, only for two genes, common variants have consistently been associated with longevity: the Apolipoprotein E gene and, to a lesser extent, FOXO. In this chapter, we review current knowledge on the association between Apolipoprotein E variants and mortality and summarize current evidence for interactions between lifestyle and Apolipoprotein E gene variants in morbidity, aging and longevity.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adami, H. O., Hunter, D. & Trichopoulos, D. Textbook of Cancer Epidemiology (Oxford University Press, New York, 2009).Google Scholar
Ahlbom, A. & Alfredsson, L. Interaction: A word with two meanings creates confusion. Eur. J. Epidemiol. 20, 564 (2005).CrossRefGoogle ScholarPubMed
Ahmad, S., Rukh, G., Varga, T. V., et al. (2013) Gene × physical activity interactions in obesity: Combined analysis of 111,421 individuals of European ancestry. PLoS Genet. 9, e1003607 (2013).CrossRefGoogle Scholar
Anselmi, C. V., Malovini, A., Roncarati, R., et al. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res. 12, 04 (2009).CrossRefGoogle Scholar
Aslibekyan, S. Gene-environment interaction in Cardiovascular Genetics and Genomics in Clinical Practice (eds. Shah, S. & Arnett, D.) (Demos Medical Publishing, New York, 2014).Google Scholar
Atzmon, G., Rincon, M., Schechter, C. B., et al. Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol. 4, 569 (2006).CrossRefGoogle ScholarPubMed
Beekman, M., Blanché, H., Perola, M., et al. Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study. Aging Cell 12, 193 (2013).CrossRefGoogle ScholarPubMed
Benetos, A., Thomas, F., Bean, K. E., Pannier, B. & Guize, L. Role of modifiable risk factors in life expectancy in the elderly. J. Hypertens. 23, 18 (2005).CrossRefGoogle Scholar
Brooks-Wilson, A. R. Genetics of healthy aging and longevity. Hum. Genet. 132, 1323–38 (2013).CrossRefGoogle ScholarPubMed
Burns, D. M., Lee, L., Shen, L. Z., et al. in Tobacco Control Monograph series 2 (National Institute Of Health, 1997). at https://pubs.cancer.gov/ncipl/detail.aspx?prodid=M040Google Scholar
Bush, W. S. & Moore, J. H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 8, e1002822 (2012).CrossRefGoogle ScholarPubMed
Christensen, K. & McGue, M. Genetics: Healthy ageing, the genome and the environment. Nat. Rev. Endocrinol. 12, 30 (2016).CrossRefGoogle ScholarPubMed
Christensen, K., Johnson, T. E. & Vaupel, J. W. The quest for genetic determinants of human longevity: challenges and insights. Nat. Rev. Genet. 7, 48 (2006).CrossRefGoogle ScholarPubMed
Corella, D. & Ordovás, J. M. Aging and cardiovascular diseases: The role of gene–diet interactions. Ageing Res. Rev. 18, 3 (2014).CrossRefGoogle ScholarPubMed
Corella, D., Portolés, O., Arriola, L., et al. Saturated fat intake and alcohol consumption modulate the association between the APOE polymorphism and risk of future coronary heart disease: A nested case-control study in the Spanish EPIC cohort. J. Nutr. Biochem. 22, 494 (2011).CrossRefGoogle ScholarPubMed
Costello, E. J., Eaves, L., Sullivan, P., et al. Genes, environments, and developmental research: Methods for a multi-site study of early substance abuse. Twin Res. Hum. Genet. 16, 55 (2013).CrossRefGoogle ScholarPubMed
Cunningham, G. C. Phenylketonuria. Early detection, diagnosis and treatment. Calif. Med. 105, 17 (1966).Google ScholarPubMed
Däumer, C., Flachsbart, F., Caliebe, A., et al. Adjustment for smoking does not alter the FOXO3A association with longevity. Age (Dordr). 36, 91 (2014).CrossRefGoogle Scholar
de Groot, L. C. P. M. G., Verheijden, M. W., de Henauw, S., et al. Lifestyle, nutritional status, health, and mortality in elderly people across Europe: A review of the longitudinal results of the SENECA study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, 12284 (2004).CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Uh, H.-W., et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum. Mol. Genet. 23, 44432 (2014).CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Uh, H.-W., et al. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10, 68 (2011).CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Capri, M., Franceschi, C. & Slagboom, P. E. Identifying the genomic determinants of aging and longevity in human population studies: Progress and challenges. BioEssays 35, 396 (2013).CrossRefGoogle ScholarPubMed
Dempfle, A., Scherag, A., Hein, R., et al. Gene–environment interactions for complex traits: Definitions, methodological requirements and challenges. Eur. J. Hum. Genet. 16, 11172 (2008).CrossRefGoogle ScholarPubMed
Dufouil, C., Tzourio, C., Brayne, C., et al. Influence of apolipoprotein E genotype on the risk of cognitive deterioration in moderate drinkers and smokers. Epidemiology 11, 284 (2000).CrossRefGoogle ScholarPubMed
Dunn, E. C., Brown, R. C., Dai, Y., et al. Genetic determinants of depression: Recent findings and future directions. Harv. Rev. Psychiatry 23, 118 (2015).CrossRefGoogle ScholarPubMed
Dunn, E. C., Wiste, A., Radmanesh, F., et al. Genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) of depressive symptoms in African American and Hispanic/Latina women. Depress. Anxiety 33, 280 (2016).CrossRefGoogle ScholarPubMed
Dupre, M. E., Liu, G. & Gu, D. Predictors of longevity: Evidence from the oldest old in China. Am. J. Public Health 98, 12 (2008).CrossRefGoogle ScholarPubMed
Elston, R. C., Olson, J. M. & Palmer, L. Biostatistical Genetics and Genetic Epidemiology (Wiley, Chichester, United Kingdom, 2002).Google Scholar
Engberg, H., Oksuzyan, A., Jeune, B., Vaupel, J. W. & Christensen, K. Centenarians – A useful model for healthy aging? A 29-year follow-up of hospitalizations among 40,000 Danes born in 1905. Aging Cell 8, 2 (2009).CrossRefGoogle Scholar
Ewbank, D. C. Differences in the association between apolipoprotein E genotype and mortality across populations. J. Gerontol. A. Biol. Sci. Med. Sci. 62, 807 (2007).CrossRefGoogle ScholarPubMed
Ewbank, D. C. The APOE gene and differences in life expectancy in Europe. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, B16B20 (2004).CrossRefGoogle ScholarPubMed
Finch, C. E. & Tanzi, R. E. Genetics of aging. Science. 278, 411 (1997).CrossRefGoogle ScholarPubMed
Flachsbart, F., Caliebe, A., Kleindorp, R., et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc. Natl. Acad. Sci. U. S. A. 106, 27 (2009).CrossRefGoogle ScholarPubMed
Fried, L. P., Kronmal, R. A., Newman, A. B., et al. Risk factors for 5-year mortality in older adults: The Cardiovascular Health Study. JAMA 279, 52 (1998).CrossRefGoogle ScholarPubMed
Frikke-Schmidt, R., Nordestgaard, B. G., Agerholm-Larsen, B., Schnohr, P. & Tybjaerg-Hansen, A. Context-dependent and invariant associations between lipids, lipoproteins, and apolipoproteins and apolipoprotein E genotype. J. Lipid Res. 41, 182 (2000).CrossRefGoogle ScholarPubMed
Frisoni, G. B., Louhija, J., Geroldi, C. & Trabucchi, M. Longevity and the epsilon2 allele of apolipoprotein E: The Finnish Centenarians Study. J. Gerontol. A. Biol. Sci. Med. Sci. 56, M758 (2001).CrossRefGoogle ScholarPubMed
Ganna, A., Rivadeneira, F., Hofman, A., et al. Genetic determinants of mortality. Can findings from genome-wide association studies explain variation in human mortality? Hum. Genet. 132, 51 (2013).CrossRefGoogle ScholarPubMed
Garatachea, N., Emanuele, E., Calero, M., et al. ApoE gene and exceptional longevity: Insights from three independent cohorts. Exp. Gerontol. 53, 3 (2014).CrossRefGoogle ScholarPubMed
Garatachea, N., Marín, P. J., Santos-Lozano, A., et al. The ApoE gene is related with exceptional longevity: A systematic review and meta-analysis. Rejuvenation Res. 18, 313 (2015).CrossRefGoogle ScholarPubMed
Gauderman, W. J. Sample size requirements for matched case-control studies of gene-environment interaction. Stat. Med. 21, 35 (2002).CrossRefGoogle ScholarPubMed
Gellert, C. Schöttker, B., Brenner, H., et al. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch. Intern. Med. 172, 254 (2012).CrossRefGoogle ScholarPubMed
Gentschew, L., Flachsbart, F., Kleindorp, R., et al. Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: A case-control association study. Biogerontology 14, 727 (2013).CrossRefGoogle ScholarPubMed
Ghebranious, N., Mukesh, B., Giampietro, P. F., et al. A pilot study of gene/gene and gene/environment interactions in Alzheimer disease. Clin. Med. Res. 9, 5 (2011).CrossRefGoogle ScholarPubMed
Grammer, T. B., Hoffmann, M. M., Scharnagl, H., et al. Smoking, apolipoprotein e genotypes, and mortality (the Ludwigshafen RIsk and Cardiovascular Health study). Eur. Heart J. 34, 12305 (2013).CrossRefGoogle ScholarPubMed
Hagberg, B. & Samuelsson, G. Survival after 100 years of age: A multivariate model of exceptional survival in Swedish centenarians. J. Gerontol. A. Biol. Sci. Med. Sci. 63, 126 (2008).CrossRefGoogle ScholarPubMed
Halme, J. T., Seppä, K., Alho, H., et al. Alcohol consumption and all-cause mortality among elderly in Finland. Drug Alcohol Depend. 106, 2 (2010).CrossRefGoogle ScholarPubMed
Hammond, E. C., Selikoff, I. J. & Seidman, H. Asbestos exposure, cigarette smoking and death rates. Ann. N. Y. Acad. Sci. 330, 40 (1979).CrossRefGoogle ScholarPubMed
Hamza, T. H., Chen, H., Hill-Burns, E. M., et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet. 7, e1002237 (2011).CrossRefGoogle ScholarPubMed
Haveman-Nies, A., Groot, L. (C. ) P. G. M. de, Burema, J., et al. Dietary quality and lifestyle factors in relation to 10-year mortality in older Europeans: The SENECA study. Am. J. Epidemiol. 156, 968 (2002).CrossRefGoogle ScholarPubMed
Hill, A. B. The environment and disease: Association or causation? Proc. R. Soc. Med. 58, 200 (1965).Google ScholarPubMed
Hjelmborg, J. B., Iachine, I., Skytthe, A., et al. Genetic influence on human lifespan and longevity. Hum. Genet. 119, 321 (2006).CrossRefGoogle Scholar
Holmes, M. V., Frikke-Schmidt, R., Melis, D., et al. A systematic review and meta-analysis of 130,000 individuals shows smoking does not modify the association of APOE genotype on risk of coronary heart disease. Atherosclerosis 237, 512 (2014).CrossRefGoogle Scholar
Huang, Y. & Mahley, R. W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol. Dis. 72, 312 (2014).CrossRefGoogle ScholarPubMed
Humphries, S. E., Talmud, P. J., Hawe, E., et al. Apolipoprotein E4 and coronary heart disease in middle-aged men who smoke: A prospective study. Lancet 358, 119 (2001).CrossRefGoogle ScholarPubMed
Hunter, D. J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 298 (2005).CrossRefGoogle ScholarPubMed
Iannitti, T. & Palmieri, B. Inflammation and genetics: An insight in the centenarian model. Hum. Biol. 83, 59 (2011).CrossRefGoogle ScholarPubMed
Jacobsen, R., Martinussen, T., Christiansen, L., et al. Increased effect of the ApoE gene on survival at advanced age in healthy and long-lived Danes: Two nationwide cohort studies. Aging Cell 9, 10009 (2010).CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L., Partridge, L., Murphy, C. T., et al. Systems biology of ageing and longevity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 64 (2011).CrossRefGoogle ScholarPubMed
Kivipelto, M., Rovio, S., Ngandu, T., et al. Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: A population-based study. J. Cell. Mol. Med. 12, 271 (2008).CrossRefGoogle ScholarPubMed
Klein, R. J., Zeiss, C., Chew, E. Y., et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 3 (2005).CrossRefGoogle ScholarPubMed
Knoops, K. T. B, Zeiss, C., Chew, E. Y., et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: The HALE project. JAMA 292, 14 (2004).CrossRefGoogle ScholarPubMed
Kulminski, A. M. Unraveling genetic origin of aging-related traits: Evolving concepts. Rejuvenation Res. 16, 32 (2013).CrossRefGoogle ScholarPubMed
Kulminski, A. M., Culminskaya, I., Arbeev, K. G., et al. The role of lipid-related genes, aging-related processes, and environment in healthspan. Aging Cell 12, 246 (2013).CrossRefGoogle ScholarPubMed
Kulminski, A. M., Arbeev, K. G., Culminskaya, I., et al. Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the apolipoprotein E4 allele on lifespan. PLoS Genet. 10, e1004141 (2014).CrossRefGoogle Scholar
Lawlor, D. A. & Mishra, G. D. Family Matters: Designing, Analysing and Understanding Family based Studies in Life Course Epidemiology. Oxford University Press, New York (2009). doi: 10.1093/acprof:oso/9780199231034.001.0001.CrossRefGoogle Scholar
Lee, S. J., Go, A. S., Lindquist, K., Bertenthal, D. & Covinsky, K. E. Chronic conditions and mortality among the oldest old. Am. J. Public Health 98, 124 (2008).CrossRefGoogle ScholarPubMed
Levine, M. & Crimmins, E. Not all smokers die young: A model for hidden heterogeneity within the human population. PLoS One 9, e87403 (2014).CrossRefGoogle Scholar
Lindahl-Jacobsen, R., Tan, Q., Mengel-From, J., et al. Effects of the APOE {varepsilon}2 allele on mortality and cognitive function in the oldest old. J. Gerontol. A Biol. Sci. Med. Sci. (2012). doi: 10.1093/gerona/gls192.Google Scholar
Luck, T., Riedel-Heller, S. G., Luppa, M., et al. Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: Analysis of gene-environment interaction for the risk of dementia and Alzheimer's disease dementia. Psychol. Med. 44, 139 (2014).CrossRefGoogle Scholar
Luo, Y., Zhang, Z. & Gu, D. Education and mortality among older adults in China. Soc. Sci. Med. 127, 12 (2015).CrossRefGoogle ScholarPubMed
Mahley, R. W., Huang, Y. & Rall, S. C. Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J. Lipid Res. 40, 19949 (1999).CrossRefGoogle ScholarPubMed
Manning, A. K., Hivert, M.-F., Scott, R. A., et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 69 (2012).CrossRefGoogle ScholarPubMed
Martelin, T., Koskinen, S. & Valkonen, T. Sociodemographic mortality differences among the oldest old in Finland. J. Gerontol. B. Psychol. Sci. Soc. Sci. 53, S8390 (1998).CrossRefGoogle ScholarPubMed
McKay, G. J., Silvestri, G., Chakravarthy, U., et al. Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people. Am. J. Epidemiol. 173, 134 (2011).CrossRefGoogle Scholar
Morris, B. J., Donlon, T. A., He, Q., et al. Association analyses of insulin signaling pathway gene polymorphisms with healthy aging and longevity in Americans of Japanese ancestry. J. Gerontol. - Ser. A Biol. Sci. Med. Sci. 69 A, 273 (2014).Google Scholar
Murabito, J. M., Yuan, R. & Lunetta, K. L. The search for longevity and healthy aging genes: Insights from epidemiological studies and samples of long-lived individuals. J. Gerontol. - Ser. A Biol. Sci. Med. Sci. 67 A, 479 (2012).Google Scholar
Nebel, A., Kleindorp, R., Caliebe, A., et al. A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech. Ageing Dev. 132, 330 (2011).CrossRefGoogle ScholarPubMed
Nettleton, J. A., Hivert, M.-F., Lemaitre, R. N., et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. Am. J. Epidemiol. 177, 15 (2013).CrossRefGoogle ScholarPubMed
Nettleton, J. A., Follis, J. L., Ngwa, J. S., et al. Gene × dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 24, 478 (2015).CrossRefGoogle ScholarPubMed
Newman, A. B. & Murabito, J. M. The epidemiology of longevity and exceptional survival. Epidemiol. Rev. 35, 197 (2013).CrossRefGoogle ScholarPubMed
Newman, A. B., Walter, S., Lunetta, K. L., et al. A meta-analysis of four genome-wide association studies of survival to age 90 years or older: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 47 (2010).Google ScholarPubMed
Newson, R. S., Witteman, J. C. M., Franco, O. H., et al. Predicting survival and morbidity-free survival to very old age. Age (Dordr). 32, 54 (2010).CrossRefGoogle ScholarPubMed
Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Current Biol. 22 (2012).CrossRefGoogle ScholarPubMed
Niti, M., Yap, K. B., Kua, E. H., Tan, C. H. & Ng, T. P. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int. Psychogeriatr. 20, 21 (2008).CrossRefGoogle ScholarPubMed
Novelli, V., Viviani Anselmi, C., Roncarati, R., et al. Lack of replication of genetic associations with human longevity. Biogerontology 9, 2 (2008).CrossRefGoogle ScholarPubMed
Nybo, H., Petersen, H. C., Gaist, D., et al. Predictors of mortality in 2,249 nonagenarians – The Danish 1905-Cohort Survey. J. Am. Geriatr. Soc. 51, 133 (2003).CrossRefGoogle Scholar
Nygaard, M., Lindahl-Jacobsen, R., Soerensen, M., et al. Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals. Exp. Gerontol. 57 (2014).CrossRefGoogle ScholarPubMed
Ortiz, G. G., Pacheco-Moisés, F. P., González-Renovato, E. D., et al. Genetic, biochemical and histopathological aspects of familiar Alzheimer's disease in Alzheimer's Disease – Challenges for the Future (ed. Zerr, Inga) (InTech, London, UK, 2015). doi: 10.5772/59809.Google Scholar
Pardo Silva, M. C., Janssens, A. C. J. W., Hofman, A., Witteman, J. C. M. & van Duijn, C. M. Apolipoprotein E gene is related to mortality only in normal weight individuals: The Rotterdam Study. Eur. J. Epidemiol. 23, 12 (2008).CrossRefGoogle ScholarPubMed
Pezzini, A., Grassi, M., Del Zotto, E., et al. Synergistic effect of apolipoprotein E polymorphisms and cigarette smoking on risk of ischemic stroke in young adults. Stroke. 35, 442 (2004).CrossRefGoogle ScholarPubMed
Raichlen, D. A. & Alexander, G. E. Exercise, APOE genotype, and the evolution of the human lifespan. Trends Neurosci. 37, 255 (2014).CrossRefGoogle ScholarPubMed
Rajan, K. B., Skarupski, K. A., Rasmussen, H. E. & Evans, D. A. Gene-environment interaction of body mass index and apolipoprotein E ε4 allele on cognitive decline. Alzheimer Dis. Assoc. Disord. 28, 10 (2014).CrossRefGoogle ScholarPubMed
Rizzuto, D. & Fratiglioni, L. Lifestyle factors related to mortality and survival: A mini-review. Gerontology 60, 335 (2014).CrossRefGoogle ScholarPubMed
Rizzuto, D., Orsini, N., Qiu, C., Wang, H.-X. & Fratiglioni, L. Lifestyle, social factors, and survival after age 75: Population based study. BMJ 345, e5568 (2012).CrossRefGoogle ScholarPubMed
Rodriguez-Laso, A., Zunzunegui, M. V. & Otero, A. The effect of social relationships on survival in elderly residents of a Southern European community: A cohort study. BMC Geriatr. 7, 19 (2007).CrossRefGoogle ScholarPubMed
Rosvall, L., Rizzuto, D., Wang, H.-X., et al. APOE-related mortality: Effect of dementia, cardiovascular disease and gender. Neurobiol. Aging 30, 15551 (2009).CrossRefGoogle ScholarPubMed
Rothman, K. J. Causes. Am. J. Epidemiol. 104, 52 (1976).CrossRefGoogle ScholarPubMed
Rothman, K. J. Epidemiology: An Introduction (Oxford University Press, New York, 2012).Google Scholar
Rothman, K. J., Greenland, S. & Associate, T. L. L. Modern Epidemiology, 3rd Edition. Taylor & Francis Ltd, London, UK (2014).Google Scholar
Ruigómez, A., Alonso, J. & Antó, J. M. Relationship of health behaviours to five-year mortality in an elderly Cohort. Age Ageing 24, 119 (1995).CrossRefGoogle Scholar
Sabia, S., Kivimaki, M., Kumari, M., Shipley, M. J. & Singh-Manoux, A. Effect of Apolipoprotein E epsilon4 on the association between health behaviors and cognitive function in late midlife. Mol. Neurodegener. 5, 23 (2010).CrossRefGoogle ScholarPubMed
Salvioli, S., Olivieri, F., Marchegiani, F., et al. Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radic. Res. 40, 13323 (2006).CrossRefGoogle Scholar
Schächter, F., Faure-Delanef, L., Guénot, F., et al. Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 6, 2 (1994).CrossRefGoogle ScholarPubMed
Schupf, N., Barral, S., Perls, T., et al. Apolipoprotein E and familial longevity. Neurobiol. Aging 34, 121 (2013).CrossRefGoogle ScholarPubMed
Sebastiani, P., Solovieff, N., Dewan, A. T., et al. Genetic signatures of exceptional longevity in humans. PLoS One 7, e29848 (2012).CrossRefGoogle ScholarPubMed
Siegert, S., Hampe, J., Schafmayer, C., et al. Genome-wide investigation of gene-environment interactions in colorectal cancer. Hum. Genet. 132, 231 (2013).CrossRefGoogle ScholarPubMed
Smith, P. G. & Day, N. E. The design of case-control studies: The influence of confounding and interaction effects. Int. J. Epidemiol. 13, 365 (1984).CrossRefGoogle ScholarPubMed
Soerensen, M., Dato, S., Tan, Q., et al. Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity. Age (Dordr). 35, 400 (2013).CrossRefGoogle ScholarPubMed
Spencer, C. A., Jamrozik, K., Norman, P. E. & Lawrence-Brown, M. A simple lifestyle score predicts survival in healthy elderly men. Prev. Med. (Baltim). 40, 7 (2005).CrossRefGoogle ScholarPubMed
Stevens, J., Pamuk, E. R., Williamson, D. F., Thun, M. J., & Wood, J. L. The effect of age on the association between body-mass index and mortality. N. Engl. J. Med. 338, 17 (1998).CrossRefGoogle ScholarPubMed
Strand, B. H., Rosness, T. A., Engedal, K., et al. Interaction of apolipoprotein E genotypes, lifestyle factors and future risk of dementia-related mortality: The Cohort of Norway (CONOR). Dement. Geriatr. Cogn. Disord. 40, 17 (2015).CrossRefGoogle ScholarPubMed
Talmud, P. J., Stephens, J. W., Hawe, E., et al. The significant increase in cardiovascular disease risk in APOE E4 carriers is evident only in men who smoke: Potential relationship between reduced antioxidant status and ApoE4. Ann. Hum. Genet. 69, 622 (2005).CrossRefGoogle ScholarPubMed
Tan, Q., Benedictis, G. De, Ukraintseva, S. V., et al. A centenarian-only approach for assessing gene-gene interaction in human longevity. Eur. J. Hum. Genet. 10, 119 (2002).CrossRefGoogle ScholarPubMed
Thinggaard, M., Jacobsen, R., Jeune, B., Martinussen, T. & Christensen, K. Is the relationship between BMI and mortality increasingly U-shaped with advancing age? A 10-year follow-up of persons aged 70–95 years. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 51 (2010).Google ScholarPubMed
Thinggaard, M., McGue, M., Jeune, B., et al. Survival prognosis in very old adults. J. Am. Geriatr. Soc. 64, 8 (2016).CrossRefGoogle ScholarPubMed
Thomas, D. Gene–environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 272 (2010).CrossRefGoogle ScholarPubMed
Vaupel, J. W. Inherited frailty and longevity. Demography 25, 287 (1988).CrossRefGoogle ScholarPubMed
Vaupel, J. W., Manton, K. G. & Stallard, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16, 44 (1979).CrossRefGoogle ScholarPubMed
Weng, P.-H., Chen, J.-H., Chen, T.-F., et al. CHRNA7 polymorphisms and dementia risk: Interactions with apolipoprotein ε4 and cigarette smoking. Sci. Rep. 6, 27231 (2016).CrossRefGoogle ScholarPubMed
Willcox, B. J., Donlon, T. A., He, Q., et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl. Acad. Sci. U. S. A. 105, 1392 (2008).CrossRefGoogle ScholarPubMed
Woodard, J. L., Sugarman, M. A., Nielson, K. A., et al. Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Curr. Alzheimer Res. 9, 46 (2012).Google ScholarPubMed
Wu, C., Kraft, P., Zhai, K., et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat. Genet. 44, 10097 (2012).CrossRefGoogle ScholarPubMed
Yates, L. B., Djoussé, L., Kurth, T., Buring, J. E. & Gaziano, J. M. Exceptional longevity in men: modifiable factors associated with survival and function to age 90 years. Arch. Intern. Med. 168, 20 (2008).CrossRefGoogle ScholarPubMed
Zeng, Y., Nie, C., Min, J., et al. Novel loci and pathways significantly associated with longevity. Sci. Rep. 6, 21243 (2016).CrossRefGoogle ScholarPubMed
Zheng, J.-S., Arnett, D. K., Lee, Y.-C., et al. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits. PLoS One 8, e77442 (2013).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×