Skip to main content
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Cited by
    This (lowercase (translateProductType product.productType)) has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Shigeno, Shuichi Andrews, Paul L. R. Ponte, Giovanna and Fiorito, Graziano 2018. Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates. Frontiers in Physiology, Vol. 9, Issue. ,

    Shigeno, Shuichi 2017. Brain Evolution by Design. p. 415.

    Wolff, Gabriella H. and Strausfeld, Nicholas J. 2016. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 371, Issue. 1685, p. 20150055.

    ×
  • Print publication year: 2014
  • Online publication date: July 2014

5 - The octopus with two brains: how are distributed and central representations integrated in the octopus central nervous system?

from Part I - Cognition, brain and evolution
Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Cephalopod Cognition
  • Online ISBN: 9781139058964
  • Book DOI: https://doi.org/10.1017/CBO9781139058964
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×

References

Altmann, J. S. (1971). Control of accept and reject reflexes in the octopus. Nature, 229: 203–207.
Anastasio, T. J. (2010). Tutorial on neural systems modeling, Sunderland, MA, Sinauer Associates Inc.
Anderson, R. C. and Mather, J. A. (2007). The packaging problem: bivalve prey selection and prey entry techniques of the octopus Enteroctopus dofleini. Journal of Comparative Psychology, 121: 300–305.
Aristotle, The history of animals, Book IX, translated by D’Arcy Wentworth Thompson (2013). ebooks@Adelaide, The University of Adelaide. Available at http://ebooks.adelaide.edu.au/a/aristotle/history/
Braitenberg, V. (1984). Vehicles: experiments in synthetic psychology, Cambridge, MA, Bradford Books, MIT Press.
Dale, J. (1999). Coordination of chemosensory orientation in the starfish Asterias forbesi. Marine and Freshwater Behaviour and Physiology, 32: 57–71.
Dyal, J. A., Owen, A. and Willows, D. (1973). Invertebrate learning: cephalopods and echinoderms. In Corning, W. C., Dyal, J. A. and Willows, A. O. D. (eds.) Invertebrate learning: cephalopods and echinoderms, New York, NY, Plenum Press.
Edelman, D. B. and Seth, A. K. (2009). Animal consciousness: a synthetic approach. Trends in Neuroscience, 32: 476–484.
Finlay, B. L., Darlington, R. B. and Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral and Brain Sciences, 24: 263–308.
Fiorito, G., Agnisola, C., D’Addio, M., Valanzano, A. and Calamandrei, G. (1998). Scopolamine impairs memory recall in Octopus vulgaris. Neuroscience, 253: 87–90.
Fiorito, G. and Gherardi, F. (1999). Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behavioural Processes, 46: 75–88.
Fiorito, G. and Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256: 545–547.
Fiorito, G., Von Planta, C. and Scotto, P. (1990). Problem solving ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda). Behavioral and Neural Biology, 53: 217–230.
Grasso, F. W. (2008). Octopus sucker–arm coordination in grasping and manipulation. American Malacological Bulletin, 24: 13–23.
Grasso, F. W. and Basil, J. (2009). The evolution of flexible behavioral repertoires in cephalopod mollusks. Brain, Behavior and Evolution, 74: 231–245.
Graziadei, P. (1965). Muscle receptors in cephalopods. Proceedings of the Royal Society. B: Biological Sciences, 161: 392–402.
Graziadei, P. P. C. (1971). The nervous system of the arms. In Young, J. Z. (ed.) The anatomy of the nervous system of Octopus vulgaris, Oxford, UK, Clarendon Press.
Graziadei, P. P. C. and Gagne, H. T. (1976). Sensory innervation of the rim of the octopus sucker. Journal of Morphology, 150: 639–680.
Gutfreund, Y., Flash, T., Fiorito, G. and Hochner, B. (1998). Patterns of arm muscle activation involved in octopus reaching movements. Journal of Neuroscience, 18: 5976–5987.
Gutnick, T., Byrne, R. A., Hochner, B. and Kuba, M. (2011). Octopus vulgaris uses visual information to determine the location of its arm. Current Biology, 21: 460–462.
Hanlon, R. T. and Messenger, J. B. (1996). Cephalopod behaviour, Cambridge, UK, Cambridge University Press.
Herculano-Houzel, S., Collins, C. E., Wong, P. and Kaas, J. H. (2007). Cellular scaling rules for primate brains. Proceedings of the National Academy of Sciences, 104: 3562–3567.
Hochner, B., Shomrat, T. and Fiorito, G. (2006). The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. The Biological Bulletin, 210: 308–317.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79: 2554–2558.
Kier, W. M. (1982). The functional morphology of the musculature of squid (loliginidae) arms and tentacles. Morphology, 172: 179–192.
Mackintosh, N. J. (1965). Discrimination learning in the octopus. Animal Behaviour suppl, 1: 129–134.
Mackintosh, N. J. and Mackintosh, J. (1963). Reversal learning in Octopus vulgaris Lamarck with and without irrelevant cues. Quarterly Journal of Experimental Psychology, 15: 236–242.
Mak, M. W., Lu, Y. L. and Ku, K. W. (1995). Improved real time recurrent learning algorithms: a review and some new approaches. Neurocomputing, 24: 13–36.
Marr, D. (1982). Vision, New York, NY, W. H. Freeman and Co.
Mather, J. A. (1998). How do octopuses use their arms?Journal of Comparative Psychology, 112: 306–316.
McCelland, J. L. and Rumelhart, D. E. (1986). Parallel distributed processing: explorations in the microstructure of cognition. Psychological and biological models, Cambridge, MA, MIT Press.
Packard, A. (1961). Sucker display of octopus. Nature, 190: 736–737.
Prescott, T. J. (2007). Forced moves or good tricks in design space? Landmarks in the evolution of neural mechanisms for action selection. Journal of Adaptive Behavior, 15: 9–31.
Rowell, C. F. H. (1963). Excitatory and inhibitory pathways in the arm of Octopus. Journal of Experimental Biology, 40: 257–270.
Rowell, C. F. H. (1966). Activity of interneurons in the arm of Octopus in response to tactile stimulation. Journal of Experimental Biology, 44: 589–605.
Shomrat, T., Graindorge, N., Bellanger, C., Fiorito, G., Loewenstein, Y. and Hochner, B. (2011). Alternative sites of synaptic plasticity in two homologous “Fan-out Fan-in” learning and memory networks. Current Biology, 21: 1773–1782.
Shomrat, T., Zarrella, I., Fiorito, G. and Hochner, B. (2008). The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Current Biology, 18: 337–342.
Sumbre, G., Fiorito, G., Flash, T. and Hochner, B. (2006). Octopuses use a human-like strategy to control precise point-to-point arm movements. Current Biology, 16: 767–772.
Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T. and Hochner, B. (2001). Control of octopus arm extension by a peripheral motor program. Science, 293: 1845–1848.
Walløe, S., Nissen, U. V., Berg, R. W., Hounsgaard, J. and Pakkenberg, B. (2011). Stereological estimate of the total number of neurons in spinal segment D9 of the Red Eared turtle. Journal of Neuroscience, 31: 2431–2435.
Wells, M. J. (1964). Tactile discrimination of surface curvature and shape by the octopus. Journal of Experimental Biology, 41: 433–445.
Wells, M. J. (1978). Octopus: physiology and behaviour of an advanced invertebrate, Chichester, Sussex, UK, John Wiley and Sons.
Wells, M. J. and Wells, J. (1957a). The function of the brain of Octopus in tactile discrimination. Journal of Experimental Biology, 34: 131–142.
Wells, M. J. and Wells, J. (1957b). Repeated presentation experiments and the function of the vertical lobe. Journal of Experimental Biology, 34: 469–477.
Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Journal of Neural Computation, 1: 270–280.
Young, J. Z. (1964). A model of the brain, Oxford, UK, Clarendon Press.
Young, J. Z. (1971). The anatomy of the nervous system of Octopus vulgaris, Oxford, UK, Clarendon Press.
Young, J. Z. (1991). Computation in the learning system of cephalopods. The Biological Bulletin, 180: 200–208.
Zullo, L. and Hochner, B. (2011). A new perspective on the organization of an invertebrate brain. Communicative and Integrative Biology, 4: 26–29.
Zullo, L., Sumbre, G., Agnisola, C., Flash, T. and Hochner, B. (2009). Nonsomatotopic organization of the higher motor centers in octopus. Current Biology, 19: 1632–1636.