Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T17:14:12.644Z Has data issue: false hasContentIssue false

2 - Mechanistic basis for the therapeutic effectiveness of botulinum toxin A on over-active cholinergic nerves

Published online by Cambridge University Press:  02 December 2009

J. Oliver Dolly
Affiliation:
International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
Gary Lawrence
Affiliation:
International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
Anthony B. Ward
Affiliation:
University Hospital of North Staffordshire
Michael P. Barnes
Affiliation:
Hunters Moor Regional Neurological Rehabilitation Centre
Get access

Summary

Introduction

Seven homologous variants (serotypes A–G) of botulinum neurotoxin (BoNT) are produced by different Clostridium botulinum, and closely-related toxins have been isolated from C. butyricum and C. barati. All are proteins with Mr ∼ 150 K which are activated by selective proteolytic cleavage to yield a heavy chain (HC) and a light chain (LC) linked by a disulphide bond and non-covalent interactions. Each exhibits amazingly high specific neurotoxicities (107–108 mouse LD50 units/mg) after separation from their naturally-occurring complexes with accessory proteins. The size and composition of such complexes differ for each serotype; for example, type A can be isolated as large assemblies (LL or L forms with Mr ∼ 900 or 450 K) of the active moiety, BoNT, with non-toxic non-haemagglutinin and several haemagglutinin proteins.

Long before the recent spiralling interest worldwide in type A toxin as a therapeutic for weakening hyper-active muscles, BoNTs had been adopted as informative probes. for delineating the fundamental process of quantal transmitter release. This choice was based on their renowned abilities to induce neuromuscular paralysis by presynaptic inhibition of acetylcholine (ACh) release. with exquisite specificity (i.e. without affecting any other measured parameters such as ion channels in the nerve terminal, ACh synthesis, etc.). Also, other toxins had been shown to be useful for the biochemical characterization of neurotransmitter receptors and cation channels. Another attraction of using BoNTs was that motor nerves in frog paralysed with type D did not atrophy or undergo any detectable ultrastructural changes over ∼50 days; likewise, mammalian nerve endings treated with type A did not degenerate but, instead, underwent remodelling that culminated in full recovery of neuro-exocytosis after 90 days.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hatheway, C. L. (1990). Toxigenic clostridia. Clin. Microbiol. Rev., 3, 66–98.CrossRefGoogle ScholarPubMed
DasGupta, B. R. (1989). In L. L. Simpson, ed., Botulinum Neurotoxin and Tetanus Toxin.New York: Academic Press, pp. 53–67.
Oguma, K., Fujinaga, Y. and Inoue, K. (1995). Structure and function of Clostridium botulinum toxins. Microbiol. Immunol., 39, 161–8.CrossRefGoogle ScholarPubMed
Dolly, J. O., Halliwell, J. V., Black, J. D., Williams, R. S., Pelchen-Matthews, A., Breeze, A. L., Mehraban, F., Othman, I. B., and Black, A. R. (1984). Botulinum neurotoxin and dendrotoxin as probes for studies on transmitter release. J. Physiol. (Paris), 79, 280–303.Google ScholarPubMed
Simpson, L. L. (1981). The origin, structure and pharmacological activity of botulinum toxin. Pharmacol. Rev., 33, 155–88.Google ScholarPubMed
Burgen, A. S. V., Dickens, F. and Zatman, L. J. (1949). The action of botulinum toxin on the neuro-muscular junction. J. Physiol. (Lond.), 109, 10–24.CrossRefGoogle ScholarPubMed
Gundersen, C. B. (1980). The effects of botulinum toxin on the synthesis, storage and release of acetylcholine. Prog. Neurobiol., 14, 99–119.CrossRefGoogle ScholarPubMed
Dolly, J. O. and Barnard, E. A. (1984). Nicotinic acetylcholine receptors: an overview. Biochem. Pharmacol., 33, 841–58.CrossRefGoogle Scholar
Catterall, W. A. (1988). Structure and function of voltage-sensitive ion channels. Science, 242, 50–61.CrossRefGoogle ScholarPubMed
Harris, A. J. and Miledi, R. (1971). The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.), 217, 497–515.CrossRefGoogle ScholarPubMed
Paiva, A., Meunier, F. A., Molgó, J., Aoki, K. R. and Dolly, J. O. (1999). Functional repair of motor endplates after botulinum neurotoxin A poisoning: bi-phasic switch of synaptic activity between nerve sprouts and their parent terminals. PNAS, 96, 3200–5.CrossRefGoogle Scholar
Katz, B. (1972). In Nobel Lectures, Physiology or Medicine 1963–1970. Amsterdam: Elsevier.Google Scholar
Simpson, L. L. (2004). Identification of the major steps in botulinum toxin action. Ann. Rev. Pharmacol. Toxicol., 44, 167–93.CrossRefGoogle ScholarPubMed
Schiavo, G., Matteoli, M. and Montecucco, C. (2000). Neurotoxins affecting neuroexocytosis. Physiol. Rev., 80, 717–66.CrossRefGoogle ScholarPubMed
Dolly, J. O., Lande, S. and Wray, D. (1987). The effects of in vitro application of purified botulinum neurotoxin at mouse motor nerve terminals. J. Physiol. (Lond.), 386, 475–84.CrossRefGoogle ScholarPubMed
MacKenzie, I., Burnstock, G. and Dolly, J. O. (1982). The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience, 7, 997–1006.CrossRefGoogle ScholarPubMed
Arnon, S. S. (2002). In M. F. Brin, J. Jankovic and M. Hallett, eds., Scientific and Therapeutic Aspects of Botulinum Toxin. Philadelphia: Lippincott Williams and Wilkins, pp. 145–50.
Williams, R. S., Tse, C.-K., Dolly, J. O., Hambleton, P. and Melling, J. (1983). Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur. J. Biochem., 131, 437–45.CrossRefGoogle ScholarPubMed
Black, J. D. and Dolly, J. O. (1986). Interaction of 125I-labelled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J. Cell Biol., 103, 521–34.CrossRefGoogle Scholar
Dolly, J. O., Black, J., Williams, R. S. and Melling, J. (1984). Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature, 307, 457–60.CrossRefGoogle ScholarPubMed
Paiva, A., Poulain, B., Lawrence, G. W., Shone, C. C., Tauc, L. and Dolly, J. O. (1993). A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin-A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J. Biol. Chem., 268, 20838–44.Google ScholarPubMed
Daniels-Holgate, P. U. and Dolly, J. O. (1996). Productive and non-productive binding of botulinum neurotoxin A to motor nerve endings are distinguished by its heavy chain. J. Neurosci. Res., 44, 263–71.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Dolly, J. O., Paiva, A., Foran, P., Lawrence, G., Daniels-Holgate, P. and Ashton, A. C. (1994). Probing the process of transmitter release with botulinum and tetanus neurotoxins. Semin. Neurosci., 6, 149–58.CrossRefGoogle Scholar
Rummel, A., Karnath, T., Henke, T., Bigalke, H. and Binz, T. (2004). Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J. Biol. Chem., 279, 30865–70.CrossRefGoogle ScholarPubMed
Dong, M., Richards, D. A., Goodnough, M. C., Tepp, W. H., Johnson, E. A. and Chapman, E. R. (2003). Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell Biol., 162, 1293–303.CrossRefGoogle ScholarPubMed
Poulain, B., Wadsworth, J. D. F., Maisey, E. A., Shone, C. C., Melling, J., Tauc, L. and Dolly, J. O. (1989). Inhibition of transmitter release by botulinum neurotoxin A: contribution of various fragments to the intoxication process. Eur. J. Biochem., 185, 197–203.CrossRefGoogle ScholarPubMed
Poulain, B., Wadsworth, J. D. F., Shone, C. C., Mochida, S., Lande, S., Melling, J., Dolly, J. O. and Tauc, L. (1989). Multiple domains of botulinum neurotoxin contribute to its inhibition of transmitter release in Aplysia neurons. J. Biol. Chem., 264, 21928–33.Google ScholarPubMed
Black, J. D. and Dolly, J. O. (1987). Selective location of acceptors for botulinum neurotoxin A on central and peripheral nerves. Neuroscience, 23, 767–79.CrossRefGoogle Scholar
Black, J. D. and Dolly, J. O. (1986). Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J. Cell Biol., 103, 535–44.CrossRefGoogle ScholarPubMed
Hughes, R. and Whaler, B. C. (1962). Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J. Physiol. (Lond.), 160, 221–33.CrossRefGoogle ScholarPubMed
Simpson, L. L. (1980). Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J. Pharmacol. Exp. Ther., 212, 16–21.Google ScholarPubMed
Simpson, L. L. and DasGupta, B. R. (1983). Botulinum neurotoxin type E: studies on mechanism of action and on structure-activity relationships. J. Pharmacol. Exp. Ther., 224, 135–40.Google ScholarPubMed
Zhou, L. Q., Paiva, A., Liu, D., Aoki, R. and Dolly, J. O. (1995). Expression and purification of the light chain of botulinum neurotoxin A: a single mutation abolishes its cleavage of SNAP-25 and neurotoxicity after reconstitution with the heavy chain. Biochemistry, 34, 15175–81.CrossRefGoogle ScholarPubMed
Poulain, B., Tauc, L., Maisey, E. A., Wadsworth, J. D. F. and Dolly, J. O. (1988). Aplysia as model for the study of the mechanism of inhibition of cholinergic transmission by botulinum neurotoxin.
Ashton, A. C. and Dolly, J. O. (1988). Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J. Neurochem., 50, 1808–16.CrossRefGoogle ScholarPubMed
McMahon, H. T., Foran, P., Dolly, J. O., Verhage, M., Wiegant, V. M. and Nicholls, D. G. (1992). Tetanus toxin and botulinum toxins type-A and type-B inhibit glutamate, γ-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes – clues to the locus of action. J. Biol. Chem., 267, 21338–43.Google Scholar
Lande, S., Pagel, C., Gibson, S. J., Kar, S., Dolly, J. O. and Polak, J. M. (1989). The immunocytochemical detection of motor end plates using antisera to protein gene product 95 (PGP 95). Abstr. 9th Nat. Mtg. Bayliss & Starling Soc.Google Scholar
Lawrence, G. W., Weller, U. and Dolly, J. O. (1994). Botulinum A and the light chain of tetanus toxins inhibit distinct stages of MgATP-dependent catecholamine exocytosis from permeabilised chromaffin cells. Eur. J. Biochem., 222, 325–33.CrossRefGoogle Scholar
Welch, M. J., Purkiss, J. R. and Foster, K. A. (2000). Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon, 38, 245–58.CrossRefGoogle ScholarPubMed
Stecher, B., Ahnert-Hilger, G., Weller, U., Kemmer, T. P. and Gratzl, M. (1992). Amylase release from streptolysin O-permeabilized pancreatic acinar cells. Effects of Ca2+, guanosine 5′-gamma-thio triphosphate, cyclic AMP, tetanus toxin and botulinum A toxin. Biochem. J., 283, 899–904.CrossRefGoogle Scholar
Paiva, A. and Dolly, J. O. (1990). Light chain of botulinum neurotoxin is active in mammalian motor nerve terminals when delivered via liposomes. FEBS Lett., 277, 171–4.CrossRefGoogle ScholarPubMed
Penner, R., Neher, E. and Dreyer, F. (1986). Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature, 324, 76–8.CrossRefGoogle Scholar
Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Delaureto, P. P., DasGupta, B. R. and Montecucco, C. (1992). Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature, 359, 832–5.CrossRefGoogle ScholarPubMed
Blasi, J., Chapman, E. R., Link, E., Binz, T., Yamasaki, S., Camilli, P., Südhof, T. C., Niemann, H. and Jahn, R. (1993). Botulinum neurotoxin-A selectively cleaves the synaptic protein SNAP-25. Nature, 365, 160–3.CrossRefGoogle ScholarPubMed
Schiavo, G., Santucci, A., DasGupta, B. R., Mehta, P. P., Jontes, J., Benfenati, F., Wilson, M. C. and Montecucco, C. (1993). Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett., 335, 99–103.CrossRefGoogle Scholar
Foran, P. G., Mohammed, N., Lisk, G. O., Nagwaney, S., Lawrence, G. W., Johnson, E., Smith, L., Aoki, K. R. and Dolly, J. O. (2003). Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J. Biol. Chem., 278, 1363–71.CrossRefGoogle Scholar
Meunier, F. A., Lisk, G., Sesardic, D. and Dolly, J. O. (2003). Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol. Cell Neurosci., 22, 454–66.CrossRefGoogle ScholarPubMed
Bruns, D., Engers, S., Yang, C., Ossig, R., Jeromin, A. and Jahn, R. (1997). Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis. J. Neurosci., 17, 1898–910.CrossRefGoogle ScholarPubMed
O'Sullivan, G. A., Mohammed, N., Foran, P. G., Lawrence, G. W. and Dolly, J. O. (1999). Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25: identification of the minimal essential C-terminal residues. J. Biol. Chem., 274, 36897–904.CrossRefGoogle ScholarPubMed
Eleopra, R., Tugnoli, V., Rossetto, O., Grandis, D. and Montecucco, C. (1998). Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci. Lett., 256, 135–8.CrossRefGoogle Scholar
Adler, M., Keller, J. E., Sheridan, R. E. and Deshpande, S. S. (2001). Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon, 39, 233–43.CrossRefGoogle Scholar
Keller, J. E., Neale, E. A., Oyler, G. and Adler, M. (1999). Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett., 456, 137–42.CrossRefGoogle ScholarPubMed
Fernandez-Salas, E., Steward, L. E., Ho, H., Garay, P. E., Sun, S. W., Gilmore, M. A., Ordas, J. V., Wang, J., Francis, J. and Aoki, K. R. (2004). Plasma membrane localization signals in the light chain of botulinum neurotoxin. PNAS, 101, 3208–13.CrossRefGoogle ScholarPubMed
Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Südhof, T. C. and Niemann, H. (1994). Synaptic vesicle membrane fusion complex: action of Clostridial neurotoxins on assembly. EMBO J., 13, 5051–61.Google ScholarPubMed
Bajohrs, M., Rickman, C., Binz, T. and Davletov, B. (2004). A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep., 5, 1090–5.CrossRefGoogle ScholarPubMed
Dolly, J. O. (1997). Therapeutic and research exploitation of botulinum neurotoxins. Eur. J. Neurol., 4, S5–10.Google Scholar
Smith, C. P. and Chancellor, M. B. (2004). Emerging role of botulinum toxin in the management of voiding dysfunction. J. Urology, 171, 2128–37.CrossRefGoogle ScholarPubMed
Brisinda, G., Bentivoglio, A. R., Maria, G. and Albanese, A. (2004). Treatment with botulinum neurotoxin of gastrointestinal smooth muscles and sphincters spasms. Mov. Disord., 19 (Suppl. 8), S146–56.CrossRefGoogle ScholarPubMed
Naumann, M. and Jost, W. (2004). Botulinum toxin treatment of secretory disorders. Mov. Disord., 19 (Suppl. 8), S137–41.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×