Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T19:21:32.910Z Has data issue: false hasContentIssue false

12 - Brittle compressive failure of confined ice

Published online by Cambridge University Press:  01 February 2010

Erland M. Schulson
Affiliation:
Dartmouth College, New Hampshire
Paul Duval
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

Compressive failure more often than not occurs under a multi-axial state of stress. For example, during the interaction between a floating ice feature and an engineered structure, material within the contact zone is compressed not only along the direction of impact, but also in orthogonal directions, owing to constraint imposed by surrounding material. The confinement induces biaxial (thin feature, wide structure) and triaxial (thick feature, narrow structure) stress states, which, as we show below, have a large effect on the strength of the ice and on its mode of failure.

This is not surprising. Based upon the failure of unconfined material and on the importance to that process of frictional crack sliding cum the development of secondary cracks (Chapter 11), confinement plays two roles: it lessens the excess or effective shear stress that drives sliding; and it lowers the mode-I stress intensity factor that drives crack growth. Higher applied stresses are thus required to activate the mechanism. Also, in holding the ice together, confinement promotes the development of shear faults. Indeed, very little confinement is required (Wachter et al., 2008), to the effect that from a practical perspective faulting and not axial splitting is the more important failure mode.

In this chapter we review the observations and their interpretation. We again begin with a short discussion of experimental methods, and then quantify the effects of confinement on the behavior of both granular and columnar polycrystalline ice.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, M. F. and Hallam, S. D. (1986). The failure of brittle solids containing small cracks under compressive stress states. Acta Metall., 34, 497–510.CrossRefGoogle Scholar
Backofen, W. A. (1972). Deformation Processing. Reading, Mass.: Addison-Wesley Publishing Co.Google Scholar
Barnes, P., Tabor, D., Walker, F. R. S. and Walker, J. F. C. (1971). The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A, 324, 127–155.CrossRefGoogle Scholar
Bazant, Z. P. and Xiang, Y. (1997). Size effect in compression fracture: Splitting crack band propagation. J. Eng. Mech., February, 162–172.CrossRefGoogle Scholar
Beeman, M., Durham, W. B. and Kirby, S. H. (1988). Friction of ice. J. Geophys. Res., 93, 7625–7633.CrossRefGoogle Scholar
Bowden, F. P. and Hughes, T. P. (1939). The mechanism of sliding on ice and snow. Proc. R. Soc. A, 172, 280–298.CrossRefGoogle Scholar
Brace, W. F. and Bombolakis, E. G. (1963). A note of brittle crack growth in compression. J. Geophys. Res., 68, 3709–3713.CrossRefGoogle Scholar
Byerlee, J. D. (1967). Frictional characteristics of granite under high confining pressure. J. Geophys. Res., 72, 3639–3648.CrossRefGoogle Scholar
Colbeck, S. C. (1995). Pressure melting and ice skating. Amer. J. Phys., 63 (10), 888–890.CrossRefGoogle Scholar
Conrad, R. E. and Friedman, M. (1976). Microscopic feather fractures in the faulting process. Tectonophysics, 33, 187–198.CrossRefGoogle Scholar
Cooke, M. L. (1997). Fracture localization along faults with spatially varying friction. J. Geophys. Res., 102, 24,425–24,434.CrossRefGoogle Scholar
Costamagna, R., Renner, J. and Bruhns, O. T. (2007). Relationship between fracture and friction for brittle rocks. Mech. Mater., 39, 291–301.CrossRefGoogle Scholar
Cottrell, A. H. (1964). The Mechanical Properties of Matter. Wiley Series on the Science and Technology of Materials. New York: John Wiley & Sons, Inc.Google Scholar
Couture, M. L. and Schulson, E. M. (1994). The cracking of ice under rapid unloading. Phil. Mag. Lett., 69, 865–886.CrossRefGoogle Scholar
Cruikshank, K. M., Zhao, G. and Johnson, A. (1991). Analysis of minor fractures associated with joints and faulted joints. J. Struct. Geol., 13, 865–886.CrossRefGoogle Scholar
Davies, R. K. and Pollard, D. D. (1986). Relations between left-lateral strike-slip faults and right-lateral kink bands in granodiorite, Mt. Abbot Quadrangle, Sierra Nevada, California. Pure Appl. Geophys., 124, 177–201.CrossRefGoogle Scholar
Durham, W. B., Heard, H. C. and Kirby, S. H. (1983). Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results. J. Geophys. Res., 88, B377–B392.CrossRefGoogle Scholar
Fortt, A. (2006). The resistance to sliding along coulombic shear faults in columnar S2 ice. Ph.D. thesis, Thayer School of Engineering, Dartmouth College.
Fortt, A. and Schulson, E. M. (2007a). Do loading path and specimens thickness affect the brittle compressive strength of ice? J. Glaciol., 53, 305–309CrossRefGoogle Scholar
Fortt, A. L. and Schulson, E. M. (2007b). The resistance to sliding along coulombic shear faults in ice. Acta Mater., 55, 2253–2264.CrossRefGoogle Scholar
Frederking, R. (1977). Plane-strain compressive strength of columnar-grained and granular-snow ice. J. Glaciol., 18, 505–516.CrossRefGoogle Scholar
Frost, H. J. and Ashby, M. F. (1982). Deformation Mechanisms Maps. Oxford: Permagon Press.Google Scholar
Gagnon, R. E. and Gammon, P. H. (1995). Triaxial experiments on iceberg and glacier ice. J. Glaciol., 41, 528–540.CrossRefGoogle Scholar
Golding, N. (2009). M.Sc. thesis. Hanover, Dartmouth College (in preparation).
Gottschalk, R. R., Kronenberg, A. K., Russel, J. E. and Handin, J. (1990). Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior. J. Geophys. Res., 95, 613–621.CrossRefGoogle Scholar
Granier, T. (1985). Origin, damping and pattern development of faults in granite. Tectonics, 4, 721–737.CrossRefGoogle Scholar
Gratz, E. T. and Schulson, E. M. (1997). Brittle failure of columnar saline ice under triaxial compression. J. Geophys. Res., 102, 5091–5107.CrossRefGoogle Scholar
Griggs, D. T. and Baker, D. W. (1969). The origin of deep focus earthquakes. In Properties of Matter Under Unusual Conditions, eds. Mark, H. and Fernback, S.. Hoboken, N.J.: Wiley Interscience, pp. 23–42.Google Scholar
Gupta, V. and Bergström, J. S. (1998). Compressive failure of rocks by shear faulting. J. Geophys. Res., 103, 23,875–23,895.CrossRefGoogle Scholar
Haimson, B. (2006). True triaxial stresses and the brittle fracture of rock. Pure Appl. Geophys. 163, 1101–1130.CrossRefGoogle Scholar
Häusler, F. U. (1981). Multiaxial compressive strength tests on saline ice using brush-type loading platens. IAHR Ice Symposium, Quebec, Canada.Google Scholar
Häusler, F. U. (1989). Beitrag zur ermittlung der kräfte beim eisbrechen under besonderere berücksichtigung der anisotropie des eises under seinter versagenseigenschaften under mehrachsiger beanspruchung. Bericht Nr. 494. Hamburg: Institut für Schiffbau der Universität Hamburg, 142.Google Scholar
Hill, R. (1950). The Mathematical Theory of Plasticity. New York: Oxford University Press.Google Scholar
Hobbs, B. E. and Ord, A. (1988). Plastic instabilities: Implications for the origin of intermediate and deep focus earthquakes. J. Geophys. Res., 93, 10,521–10,540.CrossRefGoogle Scholar
Horii, H. and Nemat-Nasser, S. (1985). Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. Geophys. Res., 90, 3105–3125.CrossRefGoogle Scholar
Horii, H. and Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Phil. Trans. R. Soc. A, 319, 337–374.CrossRefGoogle Scholar
Iliescu, D. (2000). Contributions to brittle compressive failure of ice. Ph.D. thesis, Thayer School of Engineering, Dartmouth College.
Iliescu, D. and Schulson, E. M. (2004). The brittle compressive failure of fresh-water columnar ice loaded biaxially. Acta Mater., 52, 5723–5735.CrossRefGoogle Scholar
Ingraffea, A. R. (1981). Mixed-mode fracture initiation in Indiana limestone and westerly granite. Proceedings 22nd U.S. Symposium on Rock Mechanics, 199–204.Google Scholar
Jaeger, J. C. and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics, 3rd edn. London: Chapman and Hall.Google Scholar
Johnson, K. L. (1985). Contact Mechanics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jones, S. J. (1982). The confined compressive strength of polycrystalline ice. J. Glaciol., 28, 171–177.CrossRefGoogle Scholar
Jordaan, I. J. (2001). Mechanics of ice-structure interaction. Eng. Fract. Mech., 68, 1923–1960.CrossRefGoogle Scholar
Jordaan, I. J., Matskevitch, D. G. and Meglis, I. L. (1999). Disintegration of ice under fast compressive loading. Int. J. Fract., 97, 279–300.CrossRefGoogle Scholar
Karato, S., Riedel, M. R. and Yuen, D. A. (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: Implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter., 127, 83–108.CrossRefGoogle Scholar
Kennedy, F. E., Schulson, E. M. and Jones, D. (2000). Friction of ice on ice at low sliding velocities. Phil. Mag. A, 80, 1093–1110.CrossRefGoogle Scholar
Kirby, S. H. (1987). Localized polymorphic phase transformations in high-pressure faults and applications to the physical mechanism of deep earthquakes. J. Geophys. Res., 92, 13,789–13,800.CrossRefGoogle Scholar
Kuehn, G. A. and Schulson, E. M. (1994). The mechanical properties of saline ice under uniaxial compression. Ann. Glaciol., 19, 39–48.CrossRefGoogle Scholar
Liu, F., Baker, I. and Dudley, M. (1995). Dislocation-grain boundary interactions in ice crystals. Phil. Mag. A, 71, 15–42.CrossRefGoogle Scholar
Liu, C. T., Heatherly, L., Easton, D. S.et al. (1998). Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A, 29, 1811–1820.CrossRefGoogle Scholar
Lliboutry, L. (2002). Overthrusts due to easy-slip/poor-slip transitions at the bed: The mathematical singularity with non-linear isotropic viscosity. J. Glaciol., 48, 109–119.CrossRefGoogle Scholar
Martel, S. M. and Pollard, D. D. (1989). Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock. J. Geophys. Res., 94, 9417–9428.CrossRefGoogle Scholar
Martel, S. J., Pollard, D. D. and Segall, P. (1988). Development of simple strike-slip fault zones in granitic rock, Mount Abbott Quadrangle, Sierra Nevada, California. Geol. Soc. Am. Bull., 100, 1451–1465.2.3.CO;2>CrossRefGoogle Scholar
Meglis, I. L., Melanson, P. M. and Jordaan, I. J. (1999). Microstructural change in ice: II. Creep behavior under triaxial stress conditions. J. Glaciol., 45, 438–448.CrossRefGoogle Scholar
Melanson, P. M., Meglis, I. L., Jordaan, I. J. and Stone, B. M. (1999). Microstructural change in ice: I. Constant-deformation-rate tests under triaxial stress conditions. J. Glaciol., 45, 417–455.CrossRefGoogle Scholar
Melton, J. S. and Schulson, E. M. (1998). Ductile compressive failure of columnar saline ice under triaxial loading. J. Geophys. Res., 103, 21,759–21,766.CrossRefGoogle Scholar
Montagnat, M. and Schulson, E. M. (2003). On friction and surface cracking during sliding. J. Glaciol., 49, 391–396.CrossRefGoogle Scholar
Nadreau, J.-P. and Michel, B. (1986). Yield and failure envelope for ice under multiaxial compressive stresses. Cold Reg. Sci. Technol., 13, 75–82.CrossRefGoogle Scholar
Nickolayev, O. Y. and Schulson, E. M. (1995). Grain-boundary sliding and across-column cracking in columnar ice. Phil. Mag. Lett. 72, 93–97.CrossRefGoogle Scholar
Ogawa, M. (1987). Shear instability in a viscoelastic material as the cause for deep focus earthquakes. J. Geophy. Res., 92, 13,801–13,810.CrossRefGoogle Scholar
Orowan, E. (1960). Mechanism of seismic faulting. In Rock Deformation, eds. Griggs, D. T. and Handin, J.. New York: Memoirs of the Geological Society of America, pp. 323–345.CrossRefGoogle Scholar
Paterson, M. S. and Wong, T.-F. (2005). Experimental Rock Deformation: The Brittle Field, 2nd edn. New York: Springer-Verlag.Google Scholar
Peng, S. and Johnson, A. M. (1972). Crack growth and faulting in cylindrical specimens of chelmsford granite. Int. J. Rock. Mech. Min. Sci., 9, 37–86.CrossRefGoogle Scholar
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. New York: Oxford University Press.Google Scholar
Picu, R. C. and Gupta, V. (1995). Crack nucleation in columnar ice due to elastic anistropy and grain boundary sliding. Acta Metall. Mater., 43, 3783–3789.CrossRefGoogle Scholar
Pollard, D. D. and Segall, P. (1987). Theoretical displacements and stresses near fractures in rocks: With applications to faults, joints, veins, dikes, and solution surfaces. In Fracture Mechanics of Rock, ed. Atkinson, B. K.. San Diego: Academic Press, pp. 277–349.CrossRefGoogle Scholar
Renshaw, C. E. and Schulson, E. M. (2001). Universal behavior in compressive failure of brittle materials. Nature, 412, 897–900.CrossRefGoogle ScholarPubMed
Renshaw, C. E. and Schulson, E. M. (2004). Plastic faulting: Brittle-like failure under high confinement. J. Geophys. Res., 109, 1–10.CrossRefGoogle Scholar
Richter-Menge, J. (1991). Confined compressive strength of horizontal first-year sea ice samples. J. Offshore Mech. Arctic Eng., 113, 344–351.CrossRefGoogle Scholar
Richter-Menge, J. A. and Jones, K. F. (1993). The tensile strength of first-year sea ice. J. Glaciol., 39, 609–618.CrossRefGoogle Scholar
Rispoli, R. (1981). Stress fields about strike-slip faults from stylolites and tension gashes. Tectonophysics, 75, T29–T36.CrossRefGoogle Scholar
Rist, M. A. (1997). High stress ice fracture and friction. J. Phys. Chem. B, 101, 6263–6266.CrossRefGoogle Scholar
Rist, M. A. and Murrell, S. A. F. (1994). Ice triaxial deformation and fracture. J. Glaciol., 40, 305–318.CrossRefGoogle Scholar
Rist, M. A., Jones, S. J. and Slade, T. D. (1994). Microcracking and shear fracture in ice. Ann. Glaciol., 19, 131–137.CrossRefGoogle Scholar
Roark, R. J. and Young, W. C. (1975). Formulas for Stress and Strain, 5th edn. New York: McGraw-Hill Book Co., p. 550.Google Scholar
Rudnicki, J. W. and Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Sol., 23, 371–394.CrossRefGoogle Scholar
Sammis, C. G. and Ashby, M. F. (1986). The failure of brittle porous solids under compressive stress states. Acta Metall., 34, 511–526.CrossRefGoogle Scholar
Sammonds, P. R. and Rist, M. A. (2001). Sea ice fracture and friction. In Scaling Laws in Ice Mechanics, eds. Dempsey, J. P. and Shen, H. H.. Dordrecht: Kluwer Academic Publishing, pp. 183–194.Google Scholar
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1989). Fracture of multi-year sea ice under triaxial stresses: Apparatus description and preliminary results. J. Offshore Mech. Arctic Eng., 111, 258–263.CrossRefGoogle Scholar
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1998). Fracture of multi-year sea ice. J. Geophys. Res., 103, 21,795–21,815.CrossRefGoogle Scholar
Schulson, E. M. (2001). Brittle failure of ice. Eng. Fract. Mech., 68, 1839–1887.CrossRefGoogle Scholar
Schulson, E. M. (2002). Compressive shear faulting in ice: Plastic vs. Coulombic faults. Acta Mater., 50, 3415–3424.CrossRefGoogle Scholar
Schulson, E. M. and Buck, S. E. (1995). The brittle-to-ductile transition and ductile failure envelopes of orthotropic ice under biaxial compression. Acta Metall. Mater., 43, 3661–3668.CrossRefGoogle Scholar
Schulson, E. M. and Gratz, E. T. (1999). The brittle compressive failure of orthotropic ice under triaxial loading. Acta Mater., 47, 745–755.CrossRefGoogle Scholar
Schulson, E. M. and Iliescu, D. (2006). Brittle compressive failure of ice: Proportional straining vs. proportional loading. J. Glaciol., 52, 248–250.CrossRefGoogle Scholar
Schulson, E. M. and Nickolayev, O. Y. (1995). Failure of columnar saline ice under biaxial compression: failure envelopes and the brittle-to-ductile transition. J. Geophys. Res., 100, 22,383–22,400.CrossRefGoogle Scholar
Schulson, E. M., Jones, D. E. and Kuehn, G. A. (1991). The effect of confinement on the brittle compressive fracture of ice. Ann. Glaciol., 15, 216–221.CrossRefGoogle Scholar
Schulson, E. M., Iliescu, D. and Renshaw, C. E. (1999). On the initiation of shear faults during brittle compressive failure: A new mechanism. J. Geophys. Res., 104, 695–705.CrossRefGoogle Scholar
Schulson, E. M., Fortt, A., Iliescu, D. and Renshaw, C. E. (2006a). Failure envelope of first-year arctic sea ice: The role of friction in compressive fracture. J. Geophys. Res., 111, doi: 10.1029/2005JC003234186.CrossRefGoogle Scholar
Schulson, E. M., Fortt, A., Iliescu, D. and Renshaw, C. E. (2006b). On the role of frictional sliding in the compressive fracture of ice and granite: Terminal vs. post-terminal failure. Acta Mater., 54, 3923–3932.CrossRefGoogle Scholar
Scott, T. E. and Nielsen, K. C. (1991a). The effects of porosity on the brittle-ductile transition in sandstones. J. Geophys. Res., 96, 405–414.CrossRefGoogle Scholar
Scott, T. E. and Nielsen, K. C. (1991b). The effects of porosity on fault reactivation in sandstones. J. Geophy. Res., 96, 2352–2362.Google Scholar
Segall, P. and Pollard, D. D. (1983). Nucleation and growth of strike-slip faults in granite. J. Geophys. Res., 88, 555–568.CrossRefGoogle Scholar
Shen, W. and Lin, S. Z. (1986). Fracture toughness of Bohai Bay sea ice. 5th International Offshore Mechanics and Arctic Engineering Symposium, OMAE-AIME.
Smith, T. R. and Schulson, E. M. (1993). The brittle compressive failure of fresh-water columnar ice under biaxial loading. Acta Metall. Mater., 41, 153–163.CrossRefGoogle Scholar
Smith, T. R. and Schulson, E. M. (1994). The brittle compressive failure of columnar salt-water ice under biaxial loading. J. Glaciol., 40, 265–276.CrossRefGoogle Scholar
Taylor, K. (2005). Faulting under high-confinement conditions: An experimental study of compressive failure in granular ice. M.Sc. thesis, Earth Sciences, Dartmouth College, 87.
Thouless, M. D., Evans, A. G., Ashby, M. F. and Hutchinson, J. W. (1987). The edge cracking and spalling of brittle plates. Acta. Metall., 35, 1333–1341.CrossRefGoogle Scholar
Timco, G. W. and Frederking, R. M. W. (1986). Confined compression tests: Outlining the failure envelope of columnar sea ice. Cold Reg. Sci. Technol., 12, 13–28.CrossRefGoogle Scholar
Tusima, K. (1977). Friction of a steel ball on a single crystal of ice. J. Glaciol., 19, 225–235.CrossRefGoogle Scholar
Mises, R. (1928). Mechanics of the ductile form changes of crystals. Z. Angew. Math Mech., 8, 161–185.CrossRefGoogle Scholar
Wachter, L., Renshaw, C. E. and Schulson, E. M. (2008). Transition in brittle failure mode in ice under low confinement. Acta Mater., in press.
Weiss, J. and Schulson, E. M. (1995). The failure of fresh-water granular ice under multiaxial compressive loading. Acta Metall. Mater., 43, 2303–2315.CrossRefGoogle Scholar
Weiss, J. and Schulson, E. M. (2000). Grain boundary sliding and crack nucleation in ice. Phil. Mag., 80, 279–300.CrossRefGoogle Scholar
Weiss, J., Schulson, E. M. and Stern, H. L. (2007). Sea ice rheology in-situ, satellite and laboratory observations: Fracture and friction. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2006.11.033.CrossRef
Wiens, D. A. (2001). Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties. Phys. Earth Planet. Inter., 127, 145–163.CrossRefGoogle Scholar
Winter, R. E. (1975). Adiabatic shear of titanium and polymethylmethacrylate. Phil. Mag., 31, 765–773.CrossRefGoogle Scholar
Wong, T.-F. (1982). Micromechanics of faulting in Westerly granite. Int. J. Rock Mech. Min. Sci., 19, 49–64.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×