Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-02T15:58:33.129Z Has data issue: false hasContentIssue false

C

Published online by Cambridge University Press:  05 May 2023

J. F. Cade
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Critical Care Compendium
1001 Topics in Intensive Care & Acute Medicine
, pp. 77 - 128
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Ellis, KJ, Yuen, N, Yasumura, S, et al. Dose-response analysis of cadmium in man: body-burden vs. kidney dysfunction. Environ Res 1984; 33: 216.Google Scholar
Lin, J-L, Lin-Tan, D-T, Chu, P-H, et al. Cadmium excretion predicting hospital mortality and illness severity of critically ill medical patients. Crit Care Med 2009; 37: 957.Google Scholar
Pinot, F, Kreps, SE, Bachelet, M, et al. Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Rev Environ Health 2000; 15: 299.Google Scholar

Bibliography

Floege, J, Ketteler, M. Vascular calcification in patients with end-stage renal disease. Nephrol Dial Transplant 2004; 19 (suppl. 5): V59.Google Scholar
Guldbakke, KK, Khachemoune, A. Calciphylaxis. Int J Dermatol 2007; 46: 231.Google Scholar

Bibliography

Assicot, M, Gendrel, D, Carsin, H, et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341: 515.Google Scholar
Becker, KL, Snider, R, Nylen, ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 2008; 36: 941.Google Scholar
De Jong, E, van Oers, JA, Beishuizen, A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016; 16: 819.Google Scholar
de Werra, I, Jaccard, C, Corradin, SB, et al. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparison in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med 1997; 25: 607.Google Scholar
Kalil, AC, Lisboa, T. To procalcitonin or not to procalcitonin. Chest 2019; 155: 1085.Google Scholar
Kalil, AC, Van Schooneveld, TC. Is procalcitonin-guided therapy associated with beneficial outcomes in critically ill patients with sepsis? Crit Care Med 2018; 46: 811.CrossRefGoogle ScholarPubMed
Maves, RC. Procalcitonin is not an adequate tool for antimicrobial de-escalation in sepsis. Crit Care Med 2020; 48: 1848.Google Scholar
McDermott, MT. Calcitonin and its clinical applications. Endocrinologist 1992; 2: 366.Google Scholar
Povoa, P, Kalil, AC. Any role for biomarker-guided algorithms in antibiotic stewardship programs? Crit Care Med 2020; 48: 775.Google Scholar
Scheutz, P, Wirz, Y, Sager, R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 2018; 18: 95.Google Scholar
Stevenson, JC, Hillyard, CJ, MacIntyre, I, et al. A physiological role for calcitonin: protection of the maternal skeleton. Lancet 1979; 2: 769.CrossRefGoogle ScholarPubMed
Torres, A, Artigas, A, Ferrer, R. Biomarkers in the ICU: less is more? No. Intens Care Med 2021; 47: 97.Google Scholar
Uzzan, B, Cohen, R, Nicolas, P, et al. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34: 1996.Google Scholar

Bibliography

Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Aaronson, SA. Growth factors and cancer. Science 1991; 254: 1146.Google Scholar
Adjei, AA, ed. Oncology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Angell, M. The quality of mercy. N Engl J Med 1982; 306: 98.Google Scholar
Holzman, D. New cancer genes crowd the horizon, create possibilities. J Natl Cancer Inst 1995; 87: 1108.Google Scholar
Kerr, JFR, Winterford, CM, Harmon, BV. Apoptosis: its significance to cancer and cancer therapy. Cancer 1994; 73: 2013.Google Scholar
Krontiris, TG. Oncogenes. N Engl J Med 1995; 333: 303.Google Scholar
Lowe, S, Bodis, S, McClatchey, A, et al. Status and efficacy of cancer therapy in vivo. Science 1994; 266: 807.Google Scholar
Pardoll, DM. Tumour antigens: a new look for the 1990s. Nature 1994; 369: 357.Google Scholar
Rosenberg, SA. The immunotherapy and gene therapy of cancer. J Clin Oncol 1992; 10: 180.Google Scholar
Seleznick, MJ. Tumor markers. Prim Care 1992; 19: 715.Google Scholar
Smith, RA, Cokkinides, V, Brooks, D, et al. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA: A Cancer Journal for Clinicians 2010; 60: 99.Google Scholar
Solomon, E, Borrow, J, Goddard, AD. Chromosome aberrations and cancer. Science 1991; 254: 1153.Google Scholar
Sturgeon, CM, Lai, LC, Duffy, MJ. Serum tumour markers: how to order and interpret them. BMJ 2010; 339: 852.Google Scholar
Weinberg, RA. Tumor suppressor genes. Science 1991; 254: 1138.Google Scholar
zur Hausen, H. Viruses in human cancers. Science 1991; 254: 1167.Google Scholar

Bibliography

Adelstein, DJ, Hines, SG, Carter, SF, et al. Thromboembolic events in patients with malignant superior vena cava syndrome and the role of anticoagulation. Cancer 1988; 62: 2258.Google Scholar
Arrambide, K, Toto, RD. Tumor lysis syndrome. Semin Nephrol 1993; 13: 273.Google ScholarPubMed
Barton, JC. Tumor lysis syndrome in nonhematopoietic neoplasms. Cancer 1989; 64: 738.Google Scholar
Bell, DR, Woods, RL, Levi, JA. Superior vena cava obstruction. Med J Aust 1986; 145: 566.Google Scholar
Bick, RL. Coagulation abnormalities in malignancy: a review. Semin Thromb Hemost 1992; 18: 353.Google Scholar
Carrier, M, Khorana, AA, Zwicker, JI, et al. Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombosis and bleeding: guidance from the SSC of the ISTH. J Thromb Haemost 2013; 11: 1760.Google Scholar
Cascino, TL. Neurologic complications of systemic cancer. Med Clin North Am 1993; 77: 265.Google Scholar
Chan, A, Woodruff, RK. Complications and failure of anticoagulation therapy in the treatment of venous thromboembolism in patients with disseminated malignancy. Aust NZ J Med 1992; 22: 119.Google Scholar
Coiffier, B, Mounier, N, Bologna, S, et al. Efficacy and safety of rasburicase (recombinant urate oxidase) for the prevention and treatment of hyperuricemia during induction chemotherapy of aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2003; 21: 4402.Google Scholar
Colman, RW, Rubin, RN. Disseminated intravascular coagulation due to malignancy. Semin Oncol 1990; 17: 172.Google Scholar
Gutierrez, C, McEvoy, C, Munshi, L, et al. Critical care management of toxicities associated with targeted agents and immunotherapies for cancer. Crit Care Med 2020; 48: 10.Google Scholar
Howard, SC, Jones, DP, Pui, C-H. The tumor lysis syndrome. N Engl J Med 2011; 364: 1844.Google Scholar
Langstein, HN, Norton, JA. Mechanisms of cancer cachexia. Hematol Oncol Clin North Am 1991; 5: 103.Google Scholar
Lazarus, HM, Creger, RJ, Gerson, SL. Infectious emergencies in oncology patients. Semin Oncol 1989; 16: 543.Google Scholar
McCurdy, MT, Shanholtz, CB. Oncologic emergencies. Crit Care Med 2012; 40: 2212.Google Scholar
Pizzo, PA. Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med 1993; 328: 1323.Google Scholar
Rosen, PJ. Bleeding problems in the cancer patient. Hematol Oncol Clin North Am 1992; 6: 1315.Google Scholar
Silverman, P, Distelhorst, CW. Metabolic emergencies in clinical oncology. Semin Oncol 1989; 16: 504.Google Scholar
Silverstein, RL, Nachman, RL. Cancer and clotting – Trousseau’s warning. N Engl J Med 1992; 327: 1163.CrossRefGoogle ScholarPubMed
Weiss, HW, Walker, MD, Wiernik, PH. Neurotoxicity of commonly used antineoplastic agents. N Engl J Med 1974; 291: 75 & 127.Google Scholar
Zacharski, LR, Wojtukiewicz, MZ, Costantini, V, et al. Pathways of coagulation/fibrinolysis activation in malignancy. Semin Thromb Hemost 1992; 18: 104.Google Scholar
Zafrani, L, Canet, E, Darmon, M. Understanding tumor lysis syndrome. Intens Care Med 2019; 45: 1608.Google Scholar

Bibliography

Annane, D, Chadda, K, Gajdos, P, et al. Hyperbaric oxygen therapy for acute domestic carbon monoxide poisoning: two randomized controlled studies. Intens Care Med 2011; 37: 486.Google Scholar
Blumenthal, I. Carbon monoxide poisoning. J R Soc Med 2001; 94: 270.CrossRefGoogle ScholarPubMed
Caravanti, EM, Adams, CJ, Joyce, SM, et al. Fetal toxicity associated with maternal carbon monoxide poisoning. Ann Emerg Med 1988; 17: 714.Google Scholar
Choi, IS. Delayed neurologic sequelae in carbon monoxide intoxication. Arch Neurol 1983; 40: 433.CrossRefGoogle ScholarPubMed
Cobb, N, Etzel, RA. Unintentional carbon monoxide-related deaths in the United States, 1979 through 1988. JAMA 1991; 266: 659.Google Scholar
Ernst, A, Zibrak, JD. Carbon monoxide poisoning. N Engl J Med 1998; 339: 1603.Google Scholar
Hampson, NB. Pulse oximetry in severe carbon monoxide poisoning. Chest 1998; 114: 1036.Google Scholar
Hampson, NB, Hauff, NM. Risk factors for short-term mortality from carbon monoxide poisoning treated with hyperbaric oxygen. Crit Care Med 2008; 36: 2523.Google Scholar
Hampson, NB, Rudd, RA, Hauff, NM. Increased long-term mortality among survivors of acute carbon monoxide poisoning. Crit Care Med 2009; 37: 1941.Google Scholar
Hardy, KR, Thom, DR. Pathophysiology and treatment of carbon monoxide poisoning. Clin Toxicol 1994; 32: 613.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Myers, RAM, Britten, JS. Are arterial blood gases of value in treatment decisions for carbon monoxide poisoning? Crit Care Med 1989; 17: 139.CrossRefGoogle ScholarPubMed
Raphael, JC, Elkharrat, D, Jars-Guincestre, MC, et al. Trial of normobaric and hyperbaric oxygen for acute carbon monoxide intoxication. Lancet 1989; 2: 414.Google Scholar
Rose, JJ, Wang, L, Xu, Q, et al. Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. Am J Respir Crit Care Med 2017; 195: 596.Google Scholar
Runciman, WW, Gorman, DF. Carbon monoxide poisoning: from old dogma to new uncertainties. Med J Aust 1993; 158: 439.Google Scholar
Scheinkestel, CD, Bailey, M, Myles, PS, et al. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial. Med J Aust 1999; 170: 203.Google Scholar
Shimazu, T. Half-life of blood carboxyhemoglobin. Chest 2001; 119: 661.Google Scholar
Smith, SJ, Brandon, S. Morbidity from acute carbon monoxide poisoning at three-year follow-up. BMJ 1973; 1: 318.Google Scholar
Tibbles, PM, Edelsberg, JS. Hyperbaric-oxygen therapy. N Engl J Med 1996; 334: 1642.Google Scholar
Walden, SM, Gottlieb, SO. Urban angina, urban arrhythmias: carbon monoxide and the heart. Ann Intern Med 1990; 113: 337.Google Scholar
Weaver, LK, Hopkins, RO, Chan, KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2002; 347: 1057.Google Scholar
Winter, PM, Miller, JN. Carbon monoxide poisoning. JAMA 1976; 236: 1502.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar
Ziser, A, Shupak, A, Halpern, P, et al. Delayed hyperbaric oxygen treatment for acute carbon monoxide poisoning. BMJ 1984; 289: 960.Google Scholar

Bibliography

Wartenberg, D, Reyner, D, Scott, CS. Trichlorethylene and cancer: epidemiological evidence. Environ Health Perspect 2000; 108: 161.Google Scholar

Bibliography

Faisy, C, Mokline, A, Sanchez, O, et al. Effectiveness of acetazolamide for reversal of metabolic alkalosis in weaning COPD patients from mechanical ventilation. Intens Care Med 2010; 36: 859.Google Scholar
Hanley, T, Platts, MM. Acetazolamide (Diamox) in the treatment of congestive heart failure. Lancet 1956; 270: 357.CrossRefGoogle ScholarPubMed
Preisig, PA, Toto, RD, Alpern, RJ. Carbonic anhydrase inhibitors. Renal Physiol 1987; 10: 136.Google Scholar

Bibliography

Fletcher, RH. Carcinoembryonic antigen. Ann Intern Med 1986; 104: 66.Google Scholar
Locker, GY, Hamilton, S, Harrus, J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006; 24: 5313.Google Scholar

Bibliography

Coupe, M, Levi, S, Ellis, M, et al. Therapy for symptoms in the carcinoid syndrome. Q J Med 1989; 73: 1021.Google Scholar
Godwin, JD. Carcinoid tumors: an analysis of 2837 cases. Cancer 1975; 36: 560.Google Scholar
McCaughan, BC, Martini, N, Bains, MS. Bronchial carcinoids. J Thorac Cardiovsc Surg 1985; 89: 8.Google Scholar
Modlin, IM, Moss, SF, Oberg, K, et al. Gastrointestinal neuroendocrine (carcinoid) tumours: current diagnosis and management. Med J Aust 2010; 193: 46.Google Scholar
Plockinger, U, Rindi, G, Arnold, R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours: a consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology 2004; 80: 394.Google Scholar
Wolin, EM. Advances in the diagnosis and management of well-differentiated and intermediate-differentiated neuroendocrine tumors of the lung. Chest 2017; 151: 1141.Google Scholar
Yao, JC, Hassan, M, Phan, A, et al. One hundred years after ‘carcinoid’: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063.Google Scholar

Bibliography

Acebo, E, Val-Bernal, JF, Gomez-Roman, JJ, et al. Clinicopathologic study and DNA analysis of 37 cardiac myxomas: a 28-year experience. Chest 2003; 123: 1379.Google Scholar
Casey, MC, Vaughn, CJ, He, J, et al. Mutations in the protein kinase A R1alpha regulatory subunit cause familial cardiac myxomas and Carney complex. J Clin Invest 2000; 106: R31.Google Scholar
Goodwin, JF. Diagnosis of left atrial myxoma. Lancet 1963; 1: 464.Google Scholar
Hancock, EW. Malignant pericardial disease. Cardiol Clin 1990; 8: 673.Google Scholar
Klatt, EL, Heitz, DR. Cardiac metastases. Cancer 1990; 65: 1456.Google Scholar
McGregor, GA, Cullen, RA. The syndrome of fever, anaemia and high sedimentation rate with an atrial myxoma. BMJ 1959; 2: 991.Google Scholar
Meng, Q, Lai, H, Lima, J, et al. Echocardiographic and pathologic characteristics of primary cardiac tumors; a study of 149 cases. Int J Cardiol 2002; 84: 69.Google Scholar
Pimede, L, Duhaut, P, Loire, R. Clinical presentation of left atrial myxomas: a series of 112 consecutive cases. Medicine 2001; 80: 159.Google Scholar
Reynan, K. Cardiac myxomas. N Engl J Med 1995; 333: 1610.Google Scholar
Salcedo, EE, Cohen, GI, White, RD, et al. Cardiac tumors: diagnosis and management. Curr Probl Cardiol 1992; 17: 73.Google Scholar
Tazelaar, HD, Locke, TJ, McGregor, CGA. Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc 1992; 67: 957.Google Scholar
Welch, TD, Shafi, S, Oh, JK. Diseases of the pericardium, cardiac tumors, and cardiac trauma. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Beesley, SJ, Weber, G, Sarge, T, et al. Septic cardiomyopathy. Crit Care Med 2018; 46: 625.Google Scholar
Cannon, RO, Tripodi, D, Dilsizian, V, et al. Results of permanent dual-chamber pacing in symptomatic nonobstructive hypertrophic cardiomyopathy. Am J Cardiol 1994; 73: 571.Google Scholar
Cherian, KM, John, TA, Abraham, KA. Endomyocardial fibrosis. Am Heart J 1983; 105: 706.Google Scholar
Fatkin, D, MacRae, C, Sasaki, T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999; 341: 1715.Google Scholar
Gheorghiade, M, Zarowitz, BJ. Review of randomized trials of digoxin therapy in patients with chronic heart failure. Am J Cardiol 1992; 69: 48G.Google Scholar
Gupta, PN, Valiathan, MS, Balakrishnan, KG, et al. Clinical course of endomyocardial fibrosis. Br Heart J 1989; 62: 450.Google Scholar
Homans, DC. Peripartum cardiomyopathy. N Engl J Med 1985; 312: 1432.Google Scholar
Katritsis, D, Wilmshurst, PT, Wendon, JA, et al. Primary restrictive cardiomyopathy: clinical and pathologic characteristics. J Am Coll Cardiol 1991;18: 1230.Google Scholar
Kelly, DP, Strauss, AW. Inherited cardiomyopathies. N Engl J Med 1994; 330: 913.Google Scholar
Maron, B, Maron, M. Hypertrophic cardiomyopathy. Lancet 2013; 381: 242.Google Scholar
Maron, BJ, Bonow, RO, Cannon, RO. Hypertrophic cardiomyopathy. N Engl J Med 1987; 316: 780 & 844.Google Scholar
Maron, BJ, Shirani, J, Poliac, LC, et al. Sudden death in young competitive athletes – clinical, demographic and pathological profiles. JAMA 1996; 276: 199.Google Scholar
Nishimura, R, Trusty, JM, Hayes, DL, et al. Dual-chamber pacing for hypertrophic cardiomyopathy. A randomized double-blind crossover trial. J Am Coll Cardiol 1997; 29: 435.Google Scholar
Seggewiss, H, Geichmann, U, Faber, L, et al. Percutaneous transluminal septal myocardial ablation in hypertrophic cardiomyopathy. J Am Coll Cardiol 1998; 31: 252.Google Scholar
Spirito, P, Seidman, CE, McKenna, WJ, et al. The management of hypertrophic cardiomyopathy. N Engl J Med 1997; 336: 775.Google Scholar
Sugrue, DD, Rodeheffer, RJ, Codd, MB, et al. The clinical course of idiopathic dilated cardiomyopathy. Ann Intern Med 1992; 117: 117.Google Scholar

Bibliography

Cruz, DN, Bagshaw, SM. Heart-kidney interaction: epidemiology of cardiorenal syndromes. Int J Nephrol 2010; 2011: 351291.Google Scholar
Li, X, Hassoun, HT, Santora, R, et al. Organ crosstalk: the role of the kidney. Curr Opin Crit Care 2009; 15: 481.Google Scholar
Rangaswami, J, Bhalla, V, Blair, JEA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 2019; 139: e840.Google Scholar
Ricci, Z, Romagnoli, S, Ronco, C. Cardiorenal syndrome. Crit Care Clin 2021; 37: 335.Google Scholar
Ronco, C, Haapio, M, House, AA, et al. Cardiorenal syndrome. J Am Coll Cardiol 2008; 25: 1527.Google Scholar

Bibliography

Becker, RC, Meade, TW, Berger, PB, et al. The primary and secondary prevention of coronary artery disease. Chest 2008; 133: (suppl. 6): 776S.Google Scholar
Burakoff, R, ed. Cardiovascular Medicine. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Calhoun, DA, Oparil, S. Treatment of hypertensive crisis. N Engl J Med 1990; 323: 1177.Google Scholar
Creager, MA, Beckman, J, Loscalzo, J, eds. Vascular Medicine. 2nd edition. Philadelphia: Saunders (Elsevier). 2012.Google Scholar
Gheorghiade, M, Zarowitz, BJ. Review of randomized trials of digoxin therapy in patients with chronic heart failure. Am J Cardiol 1992; 69: 48G.Google Scholar
Goodman, SG, Menon, V, Cannon, CP, et al. Acute ST-segment elevation myocardial infarction. Chest 2008; 133: (suppl. 6): 708S.Google Scholar
Guyton, AC. Blood pressure control: special role of the kidney and body fluids. Science 1991; 252: 1813.Google Scholar
Harrington, RA, Becker, RC, Cannon, CP, et al. Antithrombotic therapy for non-ST-segment elevation acute coronary syndromes. Chest 2008; 133: (suppl. 6): 670S.Google Scholar
Heusch, G, Schulz, R. Characterization of hibernating and stunned myocardium. Eur Heart J 1997; 18 (suppl. D): 102.Google Scholar
Libby, P, Zipes, DP, eds. Braunwald’s Heart Disease. 11th edition. Philadelphia: Saunders (Elsevier). 2018.Google Scholar
Marik, P, Varon, J. The obese patient in the ICU. Chest 1998; 113: 492.Google Scholar
Muller, DWM. Gene therapy for cardiovascular disease. Br Heart J 1994; 72: 309.Google Scholar
Nora, JJ. Causes of congenital heart disease: old and new modes, mechanisms, and models. Am Heart J 1993; 125: 1409.Google Scholar
Salem, DN, O’Gara, PT, Madias, C, et al. Valvular and structural heart disease. Chest 2008; 133: (suppl. 6): 593S.Google Scholar
Singer, DE, Albers, GW, Dalen, JE, et al. Antithrombotic therapy in atrial fibrillation. Chest 2008; 133: (suppl. 6): 546S.Google Scholar
Wilson, NJ, Neutze, JM. Adult congenital heart disease: principles and management guidelines. Aust NZ J Med 1993; 23: 498 & 697.Google Scholar

Bibliography

Azoulay, E, Darmon, M, Valade, S. Acute life-threatening toxicity from CAR T-cell therapy. Intens Care Med 2020; 46: 1723.Google Scholar
Boll, B, Subklewe, M, von Bergwelt-Baildon, M. Ten things the haematologist wants you to know about CAR-T cells. Intens Care Med 2020; 46: 1243.CrossRefGoogle ScholarPubMed
Gutierrez, C, Brown, ART, May, HP, et al. Critically ill patients treated for chimeric antigen receptor-related toxicity: a multicenter study. Crit Care Med 2022; 50: 81.Google Scholar
Gutierrez, C, McEvoy, C, Munshi, L, et al. Critical care management of toxicities associated with targeted agents and immunotherapies for cancer. Crit Care Med 2020; 48: 10.Google Scholar
Maude, SL, Laetsch, TW, Buechner, J, et al. Tisgenlecleucel in children and young adults with B-cell lymphoblastic leukaemia. N Engl J Med 2018; 378: 439.Google Scholar
Schuster, SJ, Bishop, MR, Tam, CS, et al. Tisgenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380: 45.Google Scholar
Selim, AG, Tam, CS. Chimeric antigen receptor T-cell therapy for haematological malignancies. Med J Aust 2020; 213: 404.Google Scholar

Bibliography

Anderson, B, Sims, K, Regnery, R, et al. Detection of Rochalimaea henselae DNA in cat scratch disease patients by PCR. J Clin Microbiol 1994; 32: 942.Google Scholar
Bergmans, AM, Peeters, MF, Schellkens, JF, et al. Pitfalls and fallacies of cat scratch disease serology. J Clin Microbiol 1997; 35: 1931.Google Scholar
Karim, AA, Cockerell, CJ, Petri, WA. Cat scratch disease, bacillary angiomatosis, and other infections due to Rochalimaea. N Engl J Med 1994; 330: 1509.Google Scholar
Regnery, RL, Martin, M, Olson, J. Naturally occurring ‘Rochalimaea henselae’ infection in domestic cat. Lancet 1992; 340: 557.Google Scholar
Regnery, R, Tappero, J. Unraveling mysteries associated with cat-scratch disease, bacillary angiomatosis, and related syndromes. Emerg Infect Dis 1995; 1: 1.Google Scholar
Relman, DA, Falkow, S, LeBoit, PE, et al. The organism causing bacillary angiomatosis, peliosis hepatis, and fever and bacteremia in immunocompromised patients. N Engl J Med 1991; 324: 1514.Google Scholar
Slater, LN, Welch, DF, Hensel, D, et al. A newly recognized fastidious gram-negative pathogen as a cause of fever and bacteremia. N Engl J Med 1990; 323: 1587.Google Scholar
Zangwill, KM, Hamilton, DH, Perkins, BA, et al. Cat scratch disease in Connecticut – epidemiology, risk factors, and evaluation of a new diagnostic test. N Engl J Med 1993; 329: 8.Google Scholar

Bibliography

Angelillo Mackinlay, TA, Lyons, GA, Chimondeguy, DJ, et al. VATS debridement versus thoracotomy in the treatment of loculated postpneumonia empyema. Ann Thorac Surg 1996; 61: 1626.Google Scholar
Bryant, RE, Salmon, CJ. Pleural empyema. Clin Infect Dis 1996; 22: 747.Google Scholar
Davies, RJO, Traill, ZC, Gleeson, FV. Randomised controlled trial of intrapleural streptokinase in community acquired pleural infection. Thorax 1997; 52: 416.Google Scholar
Janda, S, Swiston, J. Intrapleural fibrinolytic therapy for treatment of adult parapneumonic effusions and empyema: a systematic review and meta-analysis. Chest 2012; 142: 401.Google Scholar
Jerjes-Sanchez, C, Ramirez-Rivera, A, Elizalde, JJ, et al. Intrapleural fibrinolysis with streptokinase as an adjunctive treatment in hemothorax and empyema: a multicenter trial. Chest 1996; 109: 1514.Google Scholar
Landreneau, RJ, Keenan, RJ, Hazelrigg, SR, et al. Thoracoscopy for empyema and hemothorax. Chest 1995; 109: 18.Google Scholar
Leatherman, JW, Mcdonald, FM, Niewohner, DE. Fluid-containing bullae in the lung. South Med J 1985; 78: 708.Google Scholar
Maskel, NA, Davies, CW, Nunn, AJ, et al. UK controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med 2005; 352: 865.Google Scholar
Muers, MF. Streptokinase for empyema. Lancet 1997; 349: 1491.Google Scholar
Sahn, SA. Management of complicated parapneumonic effusions. Am Rev Respir Dis 1993; 148: 813.Google Scholar
Silverman, SC, Mueller, PR, Saini, S, et al. Thoracic empyema: management with image-guided catheter drainage. Radiology 1988; 169: 5.Google Scholar
Temes, RT, Follis, F, Kessler, RM, et al. Intrapleural fibrinolysis in management of empyema thoracis. Chest 1996; 110: 102.Google Scholar
Walt, MA, Sharma, S, Hohn, J, et al. A randomized trial of empyema therapy. Chest 1997; 111: 1548.Google Scholar
Weissberg, D, Refaelyb, Y. Pleural empyema: 24-year experience. Ann Thorac Surg 1996; 62: 1026.Google Scholar

Bibliography

Adrogue, HJ, Madias, NE. Hyponatremia. N Engl J Med 2000; 342: 1581.Google Scholar
Arieff, AI, Guisado, R. Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 1976; 10: 104.Google Scholar
Ayus, JC, Krothapalli, RK, Arieff, AI. Treatment of symptomatic hyponatremia and its relation to brain damage: a prospective study. N Engl J Med 1987; 317: 1190.Google Scholar
Berl, T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int 1990; 37: 1006.Google Scholar
Brown, WD. Osmotic demyelination disorders: central pontine and extrapontine myelinolysis. Curr Opinion Neurol 2000; 13: 691.Google Scholar
Brunner, JE, Redmond, JM, Haggar, AM, et al. Central pontine myelinolysis and pontine lesions after rapid correction of hyponatremia: a prospective magnetic resonance imaging study. Ann Neurol 1990; 27: 61.Google Scholar
Laureno, R, Karp, BI. Pontine and extrapontine myelinolysis following rapid correction of hyponatraemia. Lancet 1988; 1: 1439.Google Scholar
Pirzada, NA, Ali, II. Central pontine myelinolysis. Mayo Clin Proc 2001; 76: 559.Google Scholar
Soupart, A, Decaux, G. Therapeutic recommendations for management of severe hyponatremia: Current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol 1996; 46: 149.Google Scholar
Sterns, RH, Cappuccio, JD, Silver, SM, et al. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol 1994; 4: 1522.Google Scholar
Sterns, RH, Riggs, JE, Schochet, SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 1986; 314: 1535.Google Scholar
Strange, K. Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol 1992; 3: 12.Google Scholar
Tien, R, Arieff, AI, Kucharczyk, W, et al. Hyponatremic encephalopathy: is central pontine myelinolysis a component? Am J Med 1992; 92: 513.Google Scholar
Worthley, LIG. Chronic hyponatraemia and risk of myelinolysis: why is it so difficult to control the change in plasma sodium? Crit Care Resusc 2006; 8: 368.Google Scholar
Young, GB. Central pontine myelinolysis: a lesson in humility. Crit Care Med 2012; 40: 1026.Google Scholar

Bibliography

Campuzano, V, Montermini, L, Molto, MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by intronic GAA triplet repeat expansion. Science 1996; 271: 1423.Google Scholar
Delatycki, M, Williamson, R, Forrest, S. Friedrich ataxia: update on pathogenesis and possible therapies. J Med Genet 2000; 37: 1.Google Scholar
Durr, A, Cossee, M, Agid, Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335: 1169.Google Scholar
Gotoda, T, Arita, M, Arai, H, et al. Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the α-tocopherol-transfer protein. N Engl J Med 1995; 333: 1313.Google Scholar

Bibliography

Singh, S, Bohn, D, Carlotti, AP, et al. Cerebral salt wasting: truths, fallacies, theories, and challenges. Crit Care Med 2002; 30: 2575.Google Scholar

Bibliography

Burns, CB, Currie, B. The efficacy of chelation therapy and factors influencing mortality in intoxicated petrol sniffers. Aust NZ J Med 1995; 25: 197.Google Scholar
Jackson, TW, Ling, LJ, Washington, V. The effect of oral deferoxamine in iron absorption in humans. J Toxicol Clin Toxicol 1995; 33: 325.Google Scholar
Mathieu, D, Mathieu-Nolf, M, Germain-Alonso, M, et al. Massive arsenic poisoning: effect of haemodialysis and dimercaprol on arsenic kinetics. Intens Care Med 1992; 18: 47.Google Scholar
Mills, KC, Curry, SC. Acute iron poisoning. Emerg Clin North Am 1994; 12: 397.Google Scholar
Proper, R, Shurn, S, Nathan, D. Reassessment of the use of deferoxamine B in iron overload. N Engl J Med 1976; 294: 1421.Google Scholar
Proudfoot, AT, Simpson, D, Dyson, EH. Management of acute iron poisoning. Med Toxicol 1986; 1: 83.Google Scholar

Bibliography

Alapat, PM, Zimmerman, JL. Toxicology in the critical care unit. Chest 2008; 133: 1006.Google Scholar
American College of Physicians. Occupational and environmental medicine: the internist’s role. Ann Intern Med 1990; 113: 974.Google Scholar
Bascom, R, Bromberg, PA, Costa, DL, et al. Health effects of outdoor pollution. Am J Respir Crit Care Med 1996; 153: 3 & 477.Google Scholar
Cugell, DW. The hard metal diseases. Clin Chest Med 1992; 13: 269.Google Scholar
Kales, SN, Christiani, DC. Current concepts: acute chemical emergencies. N Engl J Med 2004; 350: 800.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leiken, JB, Murray, P, et al. Adult toxicology in critical care: part I: general approach to the intoxicated patient. Chest 2003; 123: 577.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Nemery, B. Metal toxicity and the respiratory tract. Eur Respir J 1990; 3: 202.Google Scholar
Nriagu, JO, Pacyna, JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988; 333: 134.Google Scholar
Olson, KR, ed. Poisoning & Drug Overdose. 7th edition. New York: McGraw-Hill (Appleton & Lange). 2017.Google Scholar
Redlich, CA, Sparer, JS, Cullen, MR. Sick building syndrome. Lancet 1997; 349: 1013.Google Scholar
Rosenstock, L, Cullen, M, Brodkin, C, et al., eds. Textbook of Clinical Occupational and Environmental Medicine. 2nd edition. Philadelphia: Saunders. 2004.Google Scholar
Roxe, DM, Krumlovsky, FA. Toxic interstitial nephropathy from metals, metabolites, and radiation. Semin Nephrol 1988; 8: 72.Google Scholar
Shannon, MW, Borron, SW, Burns, MJ, eds. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose. 4th edition. Philadelphia: WB Saunders. 2007.Google Scholar
Trujillo, MH, Guerrero, J, Fragachan, C, et al. Pharmacologic antidotes in critical care medicine: a practical guide for drug administration. Crit Care Med 1998; 26: 377.Google Scholar
Wiegand, TJ, Patel, MM, Olson, KR. Management of poisoning and drug overdose. In: Scientific American Medicine. Interdisciplinary Medicine. Hamilton: Decker Medicine. 2020.Google Scholar

Bibliography

Bergofsky, EH. Respiratory failure in disorders of the thoracic cage. Am Rev Respir Dis 1979; 119: 643.Google Scholar
Coruh, B, Benditt, JO. Chest wall and neuromuscular disorders. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Davies, D. Ankylosing spondylitis and lung fibrosis. Q J Med 1972; 41: 395.Google Scholar
Eisinger, RS, Islam, S. Caring for people with untreated pectus excavatum. Chest 2020; 157: 590.Google Scholar
Libby, DM, Briscoe, WA, Boyce, B, et al. Acute respiratory failure in scoliosis or kyphosis: prolonged survival and treatment. Am J Med 1982; 73: 532.Google Scholar
Ray, CS, Sue, DY, Bray, G, et al. Effects of obesity on respiratory function. Am Rev Respir Dis 1983; 128: 501.Google Scholar

Bibliography

Cade, JF, Pain, MCF. Essentials of Respiratory Medicine. Oxford: Blackwell. 1988.Google Scholar

Bibliography

Adelson, L, Kaufman, J. Fatal chlorine poisoning: report of two cases with clinicopathologic correlation. Am J Clin Pathol 1971; 56: 430.Google Scholar
Centers for Disease Control and Prevention. Chlorine gas toxicity from mixture of bleach with other cleaning products. JAMA 1991; 256: 2529.Google Scholar
Schonhofer, B, Voshaar, T, Kohler, D. Long-term lung sequelae following accidental chlorine gas exposure. Respiration 1996; 63: 155.Google Scholar

Bibliography

Angulo, P, Lindor, KD. Primary sclerosing cholangitis. Hepatology 1999; 30: 325.Google Scholar
Berger, MY, van der Velden, JJ, Lijmer, JG, et al. Abdominal symptoms: do they predict gallstones? A systematic review. Scand J Gastroenterol 2000; 35: 70.Google Scholar
Johnston, DE, Kaplan, MM. Pathogenesis and treatment of gallstones. N Engl J Med 1993; 328: 412.Google Scholar
Lai, EC, Mok, FP, Tan, ES, et al. Endoscopic biliary drainage for severe acute cholangitis. N Engl J Med 1992; 326: 1582.Google Scholar
LaRusso, NF, Wiesner, RH, Ludwig, J, et al. Primary sclerosing cholangitis. N Engl J Med 1984; 310: 899.Google Scholar
Lavillegrand, J-R, Mercier-Des-Rochettes, E, Baron, E, et al. Acute cholangitis in intensive care units: clinical, biochemical, microbiological spectrum and risk factors for mortality: a multicentre study. Crit Care 2021; 25: 49.Google Scholar
Lazaridis, KN, LaRusso, NF. Primary sclerosing cholangitis. N Engl J Med 2016; 375: 1161.Google Scholar
Miura, F, Okamoto, K, Takada, T, et al. Tokyo Guidelines 2018: initial management of acute biliary infection and flow-chart for acute cholangitis. J Hepatobiliary Pancreat Sci 2018; 25: 31.Google Scholar
Vennes, JA, Bond, JH. Approach to the jaundiced patient. Gastroenterology 1983; 84: 1615.Google Scholar

Bibliography

Lucas, ME, Deen, JL, von Seidlein, L, et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N Engl J Med 2005; 352: 757.Google Scholar
Popovic, T, Fields, PL, Olsvik, O, et al. Molecular subtyping of toxigenic Vibrio cholerae O139 causing epidemic cholera in India and Bangladesh, 1992–1993. J Infect Dis 1995; 171: 122.Google Scholar

Bibliography

Chandrasekhara, V, Ginsberg, GG. Gallstones and biliary tract disease. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Jenniskens, M, Langouche, L, Vanwijngaerden, Y-M, et al. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intens Care Med 2016; 42: 16.Google Scholar
Johnston, DE, Kaplan, MM. Pathogenesis and treatment of gallstones. N Engl J Med 1993; 328: 412.Google Scholar
LaMont, JT, Isselbacher, KJ. Postoperative jaundice. N Engl J Med 1973; 288: 305.Google Scholar
Vennes, JA, Bond, JH. Approach to the jaundiced patient. Gastroenterology 1983; 84: 1615.Google Scholar

Bibliography

Barceloux, DG. Chromium. J Toxicol Clin Toxicol 1999; 37: 173.Google Scholar
Langley, A, Dameron, CT. Modern metal implant toxicity and anaesthesia. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2015; 57.Google Scholar
Mertz, W. Chromium in human nutrition: a review. J Nutr 1993; 123: 626.Google Scholar

Bibliography

Clayton, EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA 2015; 313: 1101.Google Scholar
Prins, JB, van der Meer, JW, Bleijenberg, G. Chronic fatigue syndrome. Lancet 2006; 367: 346.Google Scholar
Sandler, CX, Lloyd, AR. Chronic fatigue syndrome: progress and possibilities. Med J Aust 2020; 212: 428.Google Scholar

Bibliography

Choi, YH, Im, J-G, Han, BK, et al. Thoracic manifestations of Churg–Strauss syndrome. Chest 2000; 117: 117.Google Scholar
Chumbley, LC, Harrison, EG, DeRemee, RA. Allergic granulomatosis and angiitis (Churg–Strauss syndrome). Mayo Clin Proc 1977; 52: 477.Google Scholar
Churg, J, Strauss, L. Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol 1951; 27: 277.Google Scholar
Gatenby, PA. Anti-neutrophil cytoplasmic antibody-associated systemic vasculitis: nature or nurture? Intern Med J 2012; 42: 351.Google Scholar
Guillevin, L, Cohen, P, Gayraud, M, et al. Churg–Strauss syndrome: clinical study and long-term follow-up of 96 patients. Medicine 1999; 78: 26.Google Scholar
Lanham, JG, Elkon, KB, Pusey, CD, et al. Systemic vasculitis with asthma and eosinophilia: a clinical approach to the Churg–Strauss syndrome. Medicine 1984; 63: 65.Google Scholar
Sable-Fourtassou, R, Cohen, P, Mahr, A, et al. Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome. Ann Intern Med 2005; 143: 632.Google Scholar
Salama, AD. Pathogenesis and treatment of ANCA-associated systemic vasculitis. J R Soc Med 1999; 92: 456.Google Scholar
Wechsler, ME, Finn, D, Gunawardena, D, et al. Churg–Strauss syndrome in patients receiving montelukast as treatment for asthma. Chest 2000; 117: 708.Google Scholar
Wechsler, ME, Garpestad, E, Kocher, O, et al. Pulmonary infiltrates, eosinophilia, and cardiomyopathy following corticosteroid withdrawal in patients with asthma receiving zafirlukast. JAMA 1998; 279: 455.Google Scholar

Bibliography

Gillespie, NC, Lewis, RJ, Pearn, JH, et al. Ciguatera in Australia: occurrence, clinical features, pathophysiology and management. Med J Aust 1986; 145: 584.Google Scholar
Lehane, L. Ciguatera update. Med J Aust 2000; 172: 176.Google Scholar
Morris, JG. Ciguatera fish poisoning. JAMA 1980; 244: 273.Google Scholar
Pearn, JH. Chronic fatigue syndrome: chronic ciguatera poisoning as a differential diagnosis. Med J Aust 1997; 166: 309.Google Scholar

Bibliography

Boots, R, Mead, G, Rawashdeh, O, et al. Circadian hygiene in the ICU environment (CHIE) study. Crit Care Resusc 2020; 22: 361.Google Scholar
Chan, MC, Spieth, PM, Quinn, K, et al. Circadian rhythms: from basic mechanisms to the intensive care unit. Crit Care Med 2012; 40: 246.Google Scholar
Saper, CB, Scammell, TE, Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257.Google Scholar
Telias, I, Wilcox, ME. Sleep and circadian rhythm in critical illness. Crit Care 2019; 23: 82.Google Scholar

Bibliography

Atwole, L, Baqui, AH, Benfield, T, et al. Call for emergency action to limit global temperature increases, restore biodiversity and protect health. J R Soc Med 2021; 114: 422.Google Scholar
Bein, T, Karagiannidis, C, Quintel, M. Climate change, global warming, and intensive care. Intens Care Med 2020; 46: 485.Google Scholar
Capon, AG, Talley, NJ, Horton, RC. Planetary health: what is it and what should doctors do? Med J Aust 2018; 208: 296.Google Scholar
Haines, A, Ebi, K. The imperative for climate action to protect health. N Engl J Med 2019; 380: 263.Google Scholar
Hanna, EG, McIver, LJ. Climate change: a brief overview of the science and health impacts for Australia. Med J Aust 2018; 208: 311.Google Scholar
Rocque, RJ, Beaudoin, C, Ndjaboue, R, et al. Health effects of climate change: an overview of systematic reviews. BMJ Open 2021; 11: e046333.Google Scholar
Salas, RN, Malina, D, Solomon, CG. Prioritizing health in a changing climate. N Engl J Med 2019; 381: 773.Google Scholar
Watts, N, Amann, M, Arnell, N, et al. The 2020 report of the Lancet Countdown on health and climate change: responding to converging crises. Lancet 2021; 397: 129.Google Scholar

Bibliography

Loewenstein, MS. Epidemiology of Clostridium perfringens food poisoning. N Engl J Med 1972; 286: 1026.Google Scholar
Murrell, TGC, Roth, L, Egerton, J, et al. Pig-bel: enteritis necroticans, a study in diagnosis and management. Lancet 1966; 1: 217.Google Scholar
Rechner, PM, Agger, WA, Mruz, K, et al. Clinical features of clostridial bacteremia: a review from a rural area. Clin Infect Dis 2001; 33: 349.Google Scholar
Unsworth, IP, Sharp, PA. Gas gangrene: an 11-year review of 73 cases managed with hyperbaric oxygen. Med J Aust 1984; 140: 256.Google Scholar
Weinstein, L, Barza, MA. Gas gangrene. N Engl J Med 1973; 289: 1129.Google Scholar

Bibliography

Adelman, MW, Woodworth, MH, Shaffer, VO, et al. Critical care management of the patient with Clostridioides difficile. Crit Care Med 2021; 49: 127.Google Scholar
Antonelli, M, Martin-Loeches, I, Dimopoulos, G, et al. Clostrdioides difficile (formerly Clostridium difficile) infection in the critically ill: an expert statement. Intens Care Med 2020; 46: 215.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Bobo, LD, Dubberke, ER, Kollef, M. Clostridium difficile in the ICU. Chest 2011; 140: 1643.Google Scholar
Chauhan, A, Apostolov, R, van Langenberg, D, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an Australian perspective – effective, safe, yet room for improvement. Intern Med J 2021; 51: 106.Google Scholar
Dial, S, Alrasadi, K, Manoukian, C, et al. Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors. CMAJ 2004; 171: 33.Google Scholar
Elliott, B, Chang, BJ, Golledge, CL, et al. Clostridium difficile-associated diarrhoea. Intern Med J 2007; 37: 561.Google Scholar
Fehily, SR, Basnayake, C, Wright, EK, et al. The gut microbiota and gut disease. Intern Med J 2021; 51: 1594.Google Scholar
Guery, B, Galperine, T, Barbut, F. Clostridioides difficile: diagnosis and treatments. BMJ 2019; 366: 14609.Google Scholar
Guy, AY, Kutty, PK. Clostridioides difficile infection. Ann Intern Med 2018; 169: ITC49.Google Scholar
Hempel, S, Newberry, SJ, Maher, AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 2012; 307: 1959.Google Scholar
Hickson, M, D’Souza, AL, Muthu, N, et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomized double blind placebo controlled trial. BMJ 2007; 335: 80.Google Scholar
Hvas, CL, Jorgensen, SMD, Jorgensen, SP, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 2019; 156: 1324.Google Scholar
Johnson, S, Clabots, CR, Linn, FV, et al. Nosocomial Clostridium difficile colonization and disease. Lancet 1990; 336: 97.Google Scholar
Jones, EM, MacGowan, AP. Back to basics in management of Clostridium difficile infections. Lancet 1998; 351: 505.Google Scholar
Kelly, CP, Pothoulakis, C, La Mont, JT. Clostridium difficile colitis. N Engl J Med 1994; 330: 257.Google Scholar
Leffler, DA, Lamont, JT. Clostridium difficile infection. N Engl J Med 2015; 372: 1539.Google Scholar
Loo, VG, Bourgault, AM, Poirier, L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 2011; 365: 1693.Google Scholar
Lyerly, DM, Krivan, HC, Wilkins, TD. Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1988; 1: 1.Google Scholar
Moayyedi, P, Yuan, Y, Baharith, H, et al. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 2017; 207: 166.Google Scholar
Mylonakis, E, Ryan, ET, Calderwood, SB. Clostridium difficile-associated diarrhea. Arch Intern Med 2001; 161: 525.Google Scholar
Pochapin, M. The effect of probiotics in Clostridium difficile diarrhea. Am J Gastroenterol 2000; 95: S11.Google Scholar
Riley, TV. Epidemic Clostridium difficile. Med J Aust 2006; 185: 133.Google Scholar
Trubiano, JA, Cheng, AC, Korman, TM, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2016; 46: 479.Google Scholar
van Langenberg, DR, Gearry, RB, Wong, H-L, et al. The potential value of faecal lactoferrin as a screening test in hospitalized patients with diarrhoea. Intern Med J 2010; 40: 819.Google Scholar
Young, GP, Bayley, N, Ward, P, et al. Antibiotic-associated colitis caused by Clostridium difficile: relapse and risk factors. Med J Aust 1986; 144: 303.Google Scholar

Bibliography

Aschnoune, K, Faraoni, D, Brohi, K. What’s new in management of traumatic coagulopathy. Intens Care Med 2014; 40: 1727.Google Scholar
Barton, C. Treatment of coagulopathy related to hepatic insufficiency. Crit Care Med 2016; 44: 1927.Google Scholar
Bartoszko, J, Karkouti, K. Managing the coagulopathy associated with cardiopulmonary bypass. J Thromb Haemost 2021; 19: 617.Google Scholar
Chakraverty, R, Davidson, S, Peggs, K, et al. The incidence and cause of coagulopathies in an intensive care population. Br J Haematol 1996; 93: 460.Google Scholar
Conway, EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost 2015; 13: S121.Google Scholar
Flier, JS, Underhill, LH. Molecular and cellular biology of blood coagulation. N Engl J Med 1992; 326: 800.Google Scholar
Foley, JH, Conway, EM. Cross-talk pathways between coagulation and inflammation. Circ Res 2016; 118: 1392.Google Scholar
Greenberg, CS, Sane, DC. Coagulation problems in critical care medicine. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 9. Fullerton: Society of Critical Care Medicine. 1990; p 187.Google Scholar
Iba, T, Levy, JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 2017; 16: 231.Google Scholar
Kornblith, LZ, Moore, HB, Cohen, MJ. Trauma-induced coagulopathy: the past, present, and future. J Thromb Haemost 2019; 17: 852.Google Scholar
Leung, LLK. Hemostasis and its regulation. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Levi, M, ten Cate, H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586.Google Scholar
Long, AT, Kenne, E, Jung, R, et al. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14: 427.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Mavrommatis, AC, Theodoridis, T, Economou, M, et al. Activation of the fibrinolytioc system and utilization of the coagulation inhibitors in sepsis: comparison with severe sepsis and septic shock. Intens Care Med 2001; 27: 1853.Google Scholar
Moore, HB, Gando, S, Iba, T, et al. Defining trauma-induced coagulopathy with respect to future implications for patient management: communication from the SSC of the ISTH. J Thromb Haemost 2020; 18: 740.Google Scholar
Najem, MY, Couturaud, F, Lemarie, CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost 2020; 18: 1009.Google Scholar
Oldenburg, J, Schwaab, R. Molecular biology of blood coagulation. Semin Thromb Hemost 2001; 27: 313.Google Scholar
Peyvandi, F, Mannucci, PM. Rare coagulation disorders. Thromb Haemost 1999; 82: 1207.Google Scholar
Posma, JJN, Posthuma, JJ, Spronk, HMH. Coagulation and non-coagulation effects of thrombin. J Thromb Haemost 2016; 14: 1908.Google Scholar
Rapaport, SI. Preoperative hemostatic evaluation: which tests, if any? Blood 1983; 61: 229.Google Scholar
Roberts, HR, ed. Seventh Novo Nordisk symposium on haemostasis management. Semin Haematol 2004; 41(1): suppl. 1.Google Scholar
Schmaier, AH. The contact system and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14: 28.Google Scholar
Shamanaev, A, Emsley, J, Gailani, D. Proteolytic activity of contact factor zymogens. J Thromb Haemost 2021; 19: 330.Google Scholar
Spahn, DR, Bouillon, B, Duranteau, J, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23: 98.Google Scholar
Tripodi, A, Mannucci, PM. The coagulopathy of chronic liver disease. N Engl J Med 2011; 365: 147.Google Scholar
Zhang, B, Ginsburg, D. Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders. J Thromb Haemost 2004; 2: 1564.Google Scholar

Bibliography

Langley, A, Dameron, CT. Modern metal implant toxicity and anaesthesia. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2015; p57.Google Scholar
Mao, X, Wong, AA, Crawford, RW. Cobalt toxicity – an emerging clinical problem in patients with meta-on-metal hip prostheses. Med J Aust 2011; 194: 649.Google Scholar

Bibliography

Benowitz, NL. Clinical pharmacology and toxicology of cocaine. Pharmacol Toxicol 1993; 72: 3.Google Scholar
Cregler, LL, Mark, H. Medical complications of cocaine abuse. N Engl J Med 1986; 315: 1495.Google Scholar
Dellinger, RP, Zimmerman, JL. Management of the critically ill cocaine abuser. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 6. Fullerton: Society of Critical Care Medicine. 1990; p 115.Google Scholar
de Prost, N, Lefebvre, A, Questel, F, et al. Prognosis of body packers. Intens Care Med 2005; 31: 955.Google Scholar
Dewey, SL, Morgan, AE, Ashby, CR, et al. A novel strategy for the treatment of cocaine addiction. Synapse 1998; 30: 119.Google Scholar
Forrester, JM, Steele, AW, Waldron, JA, et al. Crack lung: an acute pulmonary syndrome with a spectrum of clinical and histopathologic findings. Am Rev Respir Dis 1990; 142: 462.Google Scholar
Gawin, FH. Cocaine addiction: psychology and neurophysiology. Science 1991; 251: 1580.Google Scholar
Hollander, JE. The management of cocaine-associated myocardial ischaemia. N Engl J Med 1995; 333: 1267.Google Scholar
Karch, SB. Cocaine: history, use, abuse. J R Soc Med 1999; 92: 393.Google Scholar
Kloner, RA, Razkalla, SH. Cocaine and the heart. New Engl J Med 2003; 348: 487.Google Scholar
Lange, RA, Hillis, LD. Medical progress: cardiovascular complications of cocaine. N Engl J Med 2001; 345: 351.Google Scholar
Levine, SR, Brust, JCM, Futrell, N, et al. Cerebrovascular complications of the use of the ‘crack’ form of alkaloidal cocaine. N Engl J Med 1990; 323: 699.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Shanti, CM, Lucas, CE. Cocaine and the critical care challenge. Crit Care Med 2003; 31: 1851.Google Scholar
Vasica, G, Tennant, CC. Cocaine use and cardiovascular complications. Med J Aust 2002; 177: 260.Google Scholar

Bibliography

Anderson, RP. Coeliac disease: current approach and future prospects. Intern Med J 2008; 38: 790.Google Scholar
Campbell, CB, Roberts, RK, Cowen, AE. The changing clinical presentation of coeliac disease in adults. Med J Aust 1977; 1: 89.Google Scholar
Duggan, JM. Recent developments in our understanding of adult coeliac disease. Med J Aust 1997; 166: 312.Google Scholar
Duggan, JM. Coeliac disease: the great imitator. Med J Aust 2004; 180: 524.Google Scholar
Fasano, A, Catassi, C. Celiac disease. N Engl J Med 2012; 367: 2419.Google Scholar
Feighery, C. Coeliac disease. BMJ 1999; 319: 236.Google Scholar
Green, PH, Cellier, C. Celiac disease. N Engl J Med 2007; 357: 1731.Google Scholar
Matysiak-Budnik, T, Candalh, C, Dugave, C, et al. Alteration of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterolgy 2003; 125: 696.Google Scholar
Niland, B, Cash, BD. Health benefits and adverse effects of a gluten-free diet in non-celiac disease patients. Gastroenterol Hepatol 2018; 14: 82.Google Scholar
Potter, MDE, Walker, MM, Talley, NJ. Non-coeliac gluten or wheat sensitivity: emerging disease or misdiagnosis? Med J Aust 2017; 207: 211.Google Scholar
Reeves, GEM. Coeliac disease: against the grain. Intern Med J 2004; 34: 521.Google Scholar
Walker, MM, Ludvigsson, JF, Sanders, DS. Coeliac disease: review of diagnosis and management. Med J Aust 2017; 207: 173.Google Scholar

Bibliography

Folpini, A, Furfori, P. Colchicine toxicity: clinical features and treatment. J Toxicol Clin Toxicol 1995; 33: 71.Google Scholar
Imazio, M, Nidorf, M. Colchicine and the heart. Eur Heart J 2021; 42: 2745.Google Scholar
Maxwell, MJ, Muthu, P, Pritty, PE. Accidental colchicine overdose: a case report and literature review. Emerg Med J 2002: 19: 265.Google Scholar
Murray, SS, Kramlinger, KG, McMichan, JC, et al. Acute toxicity after excessive ingestion of colchicine. Mayo Clin Proc 1983; 58: 523.Google Scholar
Putterman, C, Ben-Chetrit, E, Caraco, Y, et al. Colchicine intoxication: clinical pharmacology, risk factors, features and management. Semin Arthritis Rheum 1991; 21: 143.Google Scholar
Stemmermann, GN, Hayashi, T. Colchicine intoxication: a reappraisal of its pathology based on study of three fatal cases. Human Pathol 1971; 2: 321.Google Scholar

Bibliography

Berentsen, S, Roth, A, Randen, U, et al. Cold agglutinin disease: current challenges and future prospects. J Blood Med 2019; 10: 93.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Frank, M, Atkinson, JP, Gadek, J. Cold agglutinins and cold agglutinin disease. Annu Rev Med 1977; 28: 291.Google Scholar

Bibliography

Antonelli, M, Martin-Loeches, I, Dimopoulos, G, et al. Clostrdioides difficile (formerly Clostridium difficile) infection in the critically ill: an expert statement. Intens Care Med 2020; 46: 215.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Bobo, LD, Dubberke, ER, Kollef, M. Clostridium difficile in the ICU. Chest 2011; 140: 1643.Google Scholar
Field, M, Rao, MC, Chang, EB. Intestinal electrolyte transport and diarrheal disease. N Engl J Med 1989; 321: 800 & 879.Google Scholar
Guery, B, Galperine, T, Barbut, F. Clostridioides difficile: diagnosis and treatments. BMJ 2019; 366: 14609.Google Scholar
Guy, AY, Kutty, PK. Clostridioides difficile infection. Ann Intern Med 2018; 169: ITC49.Google Scholar
Hickson, M, D’Souza, AL, Muthu, N, et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomized double blind placebo controlled trial. BMJ 2007; 335: 80.Google Scholar
Johnson, S, Clabots, CR, Linn, FV, et al. Nosocomial Clostridium difficile colonization and disease. Lancet 1990; 336: 97.Google Scholar
Leffler, DA, Lamont, JT. Clostridium difficile infection. N Engl J Med 2015; 372: 1539.Google Scholar
Linedale, EC, Andrews, JM. Diagnosis and management of irritable bowel syndrome: a guide for the generalist. Med J Aust 2017; 207: 309.Google Scholar
Loo, VG, Bourgault, AM, Poirier, L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 2011; 365: 1693.Google Scholar
Moayyedi, P, Yuan, Y, Baharith, H, et al. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 2017; 207: 166.Google Scholar
Pochapin, M. The effect of probiotics in Clostridium difficile diarrhea. Am J Gastroenterol 2000; 95: S11.Google Scholar
Schlager, TA, Guerrant, RL. Seven possible mechanisms for Escherichia coli diarrhea. Infect Dis Clin North Am 1988; 2: 607.Google Scholar
Soo, WT, Bryant, RV, Costello, SP. Faecal microbiota transplantation: indications, evidence and safety. Aust Prescriber 2020 43: 36.Google Scholar
Trubiano, JA, Cheng, AC, Korman, TM, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2016; 46: 479.Google Scholar
van Rheenen, PF, van de Vijver, E, Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ 2010; 341: c3369.Google Scholar
van Langenberg, DR, Gearry, RB, Wong, H-L, et al. The potential value of faecal lactoferrin as a screening test in hospitalized patients with diarrhoea. Intern Med J 2010; 40: 819.Google Scholar

Bibliography

Colten, HR, Rosen, FS. Complement deficiencies. Annu Rev Immunol 1992; 10: 809.Google Scholar
Conway, EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost 2015; 13: S121.Google Scholar
Schifferli, JA, Ng, YC, Peters, DK. The role of complement and its receptors in the elimination of immune complexes. N Engl J Med 1986; 315: 488.Google Scholar
Tomlinson, S. Complement defense mechanisms. Curr Opin Immunol 1993; 5: 83.Google Scholar
Van de Meer, JWM, Kullberg, BJ. Defects in host-defense mechanisms. In: Rubin, RH, Young, LS, eds. Clinical Approach to Infections in the Compromised Host. 4th edition. New York: Plenum. 2002.Google Scholar

Bibliography

Owen, CG, Shah, A, Henshaw, K, et al. Topical treatment for seasonal allergic conjunctivitis: systematic review and meta-analysis of efficacy and effectiveness. Br J Gen Pract 2004; 54: 451.Google Scholar

Bibliography

Blumenfeld, JD, Sealey, JE, Schlussel, Y, et al. Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med 1994; 121: 877.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Gittler, RD, Fajans, SS. Primary aldosteronism (Conn’s syndrome). J Clin Endocrinol Metab 1995; 80: 3438.Google Scholar
Melby, JC. Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am 1991; 20: 247.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
Yang, J, Fuller, PJ, Stowasser, M. Is it time to screen all patients with hypertension for primary aldosteronism? Med J Aust 2018; 209: 57.Google Scholar

Bibliography

Black, CJ, Ford, AC. Chronic idiopathic constipation in adults: epidemiology, pathophysiology, diagnosis and clinical management. Med J Aust 2018; 209: 86.Google Scholar

Bibliography

Barcelouz, DG. Copper. J Toxicol Clin Toxicol 1999; 37: 217.Google Scholar
Chelly, J, Monaco, AP. Cloning the Wilson disease gene. Nature Genetics 1993; 5: 317.Google Scholar
Ferenci, P. Wilson’s disease. Clin Liver Dis 1998; 2: 31.Google Scholar
Gaetke, LM, Chow, CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003; 189: 147.Google Scholar
Gitlin, N. Wilson’s disease: the scourge of copper. J Hepatol 1998; 28: 734.Google Scholar
Lazarchick, J. Update on anaemia and neutropenia in copper deficiency. Curr Opin Hematol 2012; 19: 58.Google Scholar
Scheinberg, IH, Sternlieb, I. Wilson’s disease. Annu Rev Med 1965; 16: 119.Google Scholar
Schilsky, ML. Wilson disease: genetic basis of copper toxicity and natural history. Semin Liver Dis 1996; 16: 83.Google Scholar
Sternlieb, I. Perspectives on Wilson’s disease. Hepatology 1990; 12: 1234.Google Scholar
Strickland, GT, Leu, M. Wilson’s disease – clinical and laboratory manifestations in 40 patients. Medicine 1975; 54: 113.Google Scholar
Wilson, SAK. Progressive lenticular degeneration. A familial nervous disease associated with cirrhosis of the liver. Brain 1912; 34: 295.Google Scholar
Yarze, JC, Martin, P, Munoz, SJ, et al. Wilson’s disease: current status. Am J Med 1992; 92: 643.Google Scholar

Bibliography

Bond, K, Williams, E, Howden, BP, et al. Serological tests for COVID-19. Med J Aust 2020; 213: 397.Google Scholar
Fischetti, M, ed. Inside the coronavirus. Sci Am 2020; 323: 28.Google Scholar
Iba, T, Levy, JH, Levi, M, et al. Coagulopathy of coronavirus disease 2019. Crit Care Med 2020; 48: 1358.Google Scholar
Jevremovic, V, Ison, MG. Coronaviruses: HCOV, SARS-COV, MERS-COV, and COVID-19. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Thevarajan, I, Buising, KL, Cowie, BC. Clinical presentation and management of COVID-19. Med J Aust 2020; 213: 134.Google Scholar
Tsang, JLY, Binnie, A, Fowler, RA. Twenty articles that critical care clinicians should read about COVID-19. Intens Care Med 2021; 47: 337.Google Scholar
Various. COVID-19: implications for health care. Med J Aust 2020; 212: no. 10.Google Scholar
Various. The coronavirus pandemic. Sci Am 2020; 322: no. 6.Google Scholar
Various. Special section on COVID-19. Intens Care Med 2020; 46: no. 6.Google Scholar
Various. Multiple articles on COVID-19. Intens Care Med 2020; 46: no. 8.Google Scholar
Various. How COVID changed the world. Sci Am 2022; 326: no. 3.Google Scholar

Bibliography

Canning, BJ, Chang, AB, Bolser, DC, et al. Anatomy and neurophysiology of cough: CHEST guideline and expert panel report. Chest 2014; 146: 1633.Google Scholar
Gibson, P, Wang, G, McGarvey, L, et al. Treatment of unexplained chronic cough: CHEST guideline and expert panel report. Chest 2016; 149: 27.Google Scholar
Irwin, RS, French, CT, Lewis, SZ, et al. Overview of the management of cough: CHEST guideline and expert panel report. Chest 2014; 146: 885.Google Scholar
Jiang, M, Guan, W-j, Fang, Z-f, et al. A critical review of the quality of cough clinical practice guidelines. Chest 2016; 150: 777.Google Scholar
Lee, KK, Davenport, PW, Smith, JA, et al. Global physiology and pathophysiology of cough: part 1: cough phenomenology – CHEST guideline and expert panel report. Chest 2021; 159: 282.Google Scholar

Bibliography

Black, S, Kushner, I, Samols, D. C-reactive protein. J Biol Chem 2004; 279: 48487.Google Scholar
Gabay, C, Kushner, I. Acute phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448.Google Scholar
Harrison, M. Erythrocyte sedimentation rate and C-reactive protein. Aust Prescriber 2015; 38: 93.Google Scholar
Ho, KM, Lipman, J. An update on C-reactive protein for intensivists. Anaesth Intens Care 2009; 37: 234.Google Scholar
Pepys, MB. C-reactive protein fifty years on. Lancet 1981; I: 653.Google Scholar
Pepys, MB, Berger, A. The renaissance of C-reactive protein. BMJ 2001; 322: 4.Google Scholar
Povoa, P. C-reactive protein: a valuable marker of sepsis. Intens Care Med 2002; 28: 235.Google Scholar
Reny, J-L, Vuagnat, A, Ract, C, et al. Diagnosis and follow-up of infections in intensive care patients: value of C-reactive protein compared with other clinical and biological variables. Crit Care Med 2002; 30: 529.Google Scholar
Ridker, PM, Bassuk, SS, Toth, PP. C-reactive protein and risk of cardiovascular disease. Curr Atherosclerosis Rep 2003; 5: 341.Google Scholar

Bibliography

Andrews, NJ, Farrington, CP, Cousens, SN, et al. Incidence of variant Creutzfeldt-Jakob disease in the UK. Lancet 2000; 356: 481.Google Scholar
Beale, AJ. BSE and vCJD: what is the future? J R Soc Med 2001; 94: 207.Google Scholar
Beale, AJ. More on BSE/vCJD. J R Soc Med 2001; 94: 611.Google Scholar
Brown, P, Cervenakova, L, Goldfarb, LG, et al. Iatrogenic Creutzfeldt-Jakob disease: an example of the interplay between ancient genes and modern medicine. Neurology 1994; 44: 291.Google Scholar
Brown, P, Will, RG, Bradley, R, et al. Bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease: background, evolution and current concerns. Emerg Infect Dis 2001; 7: 1.Google Scholar
Bruce, ME, Will, RG, Ironside, JW, et al. Transmissions of mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 1997; 389: 448.Google Scholar
Collins, SJ, Lawson, VA, Masters, CL. Transmissible spongiform encephalopathy. Lancet 2004; 363: 51.Google Scholar
Collins, S, Masters, CL. Iatrogenic and zoonotic Creutzfeldt-Jakob disease. Med J Aust 1996; 164: 598.Google Scholar
DeArmond, SJ. Overview of the transmissible spongiform encephalopathies: prion protein disorders. Br Med Bull 1993; 49: 725.Google Scholar
Edney, ATB. Spongiform encephalopathies: still many unanswered questions. J R Soc Med 1996; 89: 423.Google Scholar
Hill, AF, Butterworth, RJ, Joiner, S, et al. Investigation of variant Creutzfeldt-Jakob disease and other prion diseases with tonsil biopsy samples. Lancet 200; 353: 183.Google Scholar
Holman, RC, Khan, AS, Belay, ED, et al. Creutzfeldt-Jakob disease in the United States, 1979–1994: using national mortality data to assess the possible occurrence of variant cases. Emerg Infect Dis 1996; 2: 4.Google Scholar
Ironside, JW, Head, MW. Variant Creutzfeldt-Jakob disease and its transmission by blood. J Thromb Haemost 2003; 1: 1479.Google Scholar
Koehler, AP, Athan, E, Collins, SJ. Updated Creutzfeldt-Jakob disease infection control guidelines: sifting facts from fiction. Med J Aust 2013; 198: 245.Google Scholar
Llewelyn, CA, Hewitt, PE, Knight, RS, et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 2004; 363: 417.Google Scholar
Masters, CL. The emerging European epidemic of variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Med J Aust 2001; 174: 160.Google Scholar
Mitchell, AR. Creutzfeldt-Jakob disease. Lancet 1996; 347: 1704.Google Scholar
Parchi, P, Castellani, R, Capellari, S, et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 1996; 39: 767.Google Scholar
Pattison, J. The emergence of bovine spongiform encephalopathy and related diseases. Emerg Infect Dis 1998; 4: 3.Google Scholar
Prusiner, SB. Molecular biology of prion disease. Science 1991; 252: 1515.Google Scholar
Prusiner, SB, Hsiao, KK. Human prion diseases. Ann Neurol 1994; 35: 385.Google Scholar
Venters, GA. New variant Creutzfeldt-Jakob disease: the epidemic that never was. BMJ 2001; 323: 858.Google Scholar
Will, RG. Gene influence on Creutzfeldt-Jakob disease. Lancet 1994; 344: 1310.Google Scholar
Will, RG, Ironside, JW, Zeidler, M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996; 347: 921.Google Scholar
Wilson, K, Code, C, Ricketts, MN. Risk of acquiring Creutzfeldt-Jakob disease from blood transfusions. BMJ 2000; 321: 17.Google Scholar
Zerr, I, Schulz-Schaeffer, WJ, Giese, A, et al. Current clinical diagnosis in Creutzfeldt-Jakob disease: identification of uncommon variants. Ann Neurol 2000; 48: 323.Google Scholar

Bibliography

Montgomery, WW. Cricoarytenoid arthritis. Laryngoscope 1963; 73: 801.Google Scholar

Bibliography

Jolley, SE, Bunnell, AE, Hough, CL. ICU-acquired weakness. Chest 2016; 150: 1129.Google Scholar
Kress, JP, Hall, JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014; 370: 1626.Google Scholar
Vanhorebeek, I, Latronico, N, Van den Berghe, G. ICU-acquired weakness. Intens Care Med 2020; 46: 637.Google Scholar

Bibliography

Chang, CC, Hall, V, Cooper, C, et al. Consensus guidelines for the diagnosis and management of cryptococcosis and rare yeast infections in the haematology/oncology setting, 2021. Intern Med J 2021; 51: 118.Google Scholar
Nadrous, HF, Antonios, VS, Terrell, CL, et al. Pulmonary cryptococcosis in nonimmunocompromised patients. Chest 2003; 124: 2143.Google Scholar

Bibliography

Al-Kurd, A, Mazeh, H. The endocrine system: adrenal glands. In: Scientific American Medicine. Organ Systems: Anatomy & Physiology. Hamilton: Dekker Medicine. 2020.Google Scholar
Aron, DC, Findling, JW, Tyrrell, JB. Cushing’s disease. Endocrinol Metab Clin North Am 1987; 16: 705.Google Scholar
Bertagna, X. New causes of Cushing’s syndrome. N Engl J Med 1992; 327: 1024.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Jeffcoate, WJ. Treating Cushing’s disease. BMJ 1988; 296: 227.Google Scholar
Johanssen, S, Allolio, B. Mifepristone (RU 486) in Cushing’s syndrome. Eur J Endocrinol 2007; 157: 561.Google Scholar
Kaye, TB, Crapo, L. The Cushing syndrome: an update on diagnostic tests. Ann Intern Med 1990; 112: 434.Google Scholar
Nieman, L. Cushing syndrome. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Odell, WD. Ectopic ACTH secretion: a misnomer. Endocrinol Metab Clin North Am 1991; 20: 371.Google Scholar

Bibliography

Curry, SC, Arnold-Capell, P. Nitroprusside, nitroglycerin, and angiotensin-converting enzyme inhibitors. Crit Care Clin 1991; 7: 555.Google Scholar
Freeman, AG. Optic neuropathy and chronic cyanide intoxication: a review. J R Soc Med 1988; 81: 103.Google Scholar
Kulig, K. Cyanide antidotes and fire toxicology. N Engl J Med 1991; 325: 1801.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Robin, ED, McCauley, R. Nitroprusside-related cyanide poisoning. Chest 1992; 102: 1842.Google Scholar
Vick, JA, Froehlich, H. Treatment of cyanide poisoning. Milit Med 1991; 156: 330.Google Scholar
Zerbe, NF, Wagner, BK. Use of vitamin B12 in the treatment and prevention of nitroprusside-induced cyanide toxicity. Crit Care Med 1993; 21: 465.Google Scholar

Bibliography

Bell, SC, Mall, MA, Gutierrez, H, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med 2020; 8: 65.Google Scholar
Brock, DJH. Prenatal screening for cystic fibrosis. Lancet 1996; 347: 148.Google Scholar
Davidson, DJ, Porteous, DJ. The genetics of cystic fibrosis lung disease. Thorax 1998; 53: 389.Google Scholar
Editorial. What is cystic fibrosis? N Engl J Med 2002; 347: 439.Google Scholar
Edmondson, C, Davies, JC. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis 2016; 7: 170.Google Scholar
Elborn, JS. Cystic fibrosis. Lancet 2016; 388: 2519.Google Scholar
Elborn, JS, Shale, DJ, Britton, JR. Cystic fibrosis: current survival and population estimates to the year 2000. Thorax 1991; 46: 881.Google Scholar
Elkins, MR, Robinson, M, Rose, BR, et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006; 354: 229.Google Scholar
Flume, PA, Mogayzel, PJ, Robinson, KA, et al. Cystic fibrosis pulmonary guidelines: pulmonary complications of haemoptysis and pneumothorax. Am J Respir Crit Care Med 2010; 182: 298.Google Scholar
Frizzell, RA. Functions of the cystic fibrosis transmembrane conductance regulator protein. Am J Respir Crit Care Med 1995; 151: S54.Google Scholar
Fuchs, HJ, Borowitz, DS, Christiansen, DH, et al. Effect of recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 1994; 331: 637.Google Scholar
Hilman, BC. Genetic and immunologic aspects of cystic fibrosis. Ann Allergy Asthma Immunol 1997; 79: 379.Google Scholar
Hoffman, LR, Ramsey, BW. Cystic fibrosis therapeutics: the road ahead. Chest 2013; 143: 207.Google Scholar
King, CS, Brown, AW, Aryal, S, et al. Critical care of the adult patient with cystic fibrosis. Chest 2019; 155: 202.Google Scholar
Knowles, MR, Church, NL, Waltner, WE, et al. A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N Engl J Med 1990; 322: 1189.Google Scholar
Masel, P. Management of cystic fibrosis in adults. Aust Prescriber 2012; 35: 118.Google Scholar
Merlo, CA, Boyle, MP. Modifier genes in cystic fibrosis lung disease. J Lab Clin Med 2003; 141: 237.Google Scholar
Mills, CE. Nutrition and lung disease in cystic fibrosis. Clin Chest Med 2007; 28: 319.Google Scholar
Orenstein, DM. Diagnosis of cystic fibrosis. Semin Respir Med 1985; 6: 252.Google Scholar
Pittman, JE, Ferkol, TW. The evolution of cystic fibrosis care. Chest 2015; 148: 533.Google Scholar
Robinson, M, Regnis, JA, Bailey, DL, et al. Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 1996; 153: 1503.Google Scholar
Rosenstein, BJ, Zeitlin, PL. Cystic fibrosis. Lancet 1998; 351: 277.Google Scholar
Rowe, SM, Clancy, JP, Sorscher, EJ. A breath of freash air. Sci Am 2011; 305: 49.Google Scholar
Rowe, SM, Miller, S, Sorscher, EJ. Cystic fibrosis. N Engl J Med 2005; 352: 1992.Google Scholar
Rubin, BK. Emerging therapies for cystic fibrosis lung disease. Chest 1999; 115: 1120.Google Scholar
Sawyer, SM, Robertson, CF, Bowes, G. Cystic fibrosis: a changing clinical perspective. Aust NZ J Med 1997; 27: 6.Google Scholar
Stoltz, DA, Meyerholz, DK, Welsh, MJ. Origins of cystic fibrosis lung disease. N Engl J Med 2015; 372: 351.Google Scholar
The Cystic Fibrosis Genotype-Phenotype Consortium. Correlation between genotype and phenotype in patients with cystic fibrosis. N Engl J Med 1993; 329: 1308.Google Scholar
Tsui, L-C. The cystic fibrosis transmembrane conductance regulator gene. Am J Respir Crit Care Med 1995; 151: S47.Google Scholar
Wallis, G. Diagnosing cystic fibrosis: blood, sweat, and tears. Arch Dis Child 1997; 76: 85.Google Scholar
Welsh, MJ, Smith, AE. Cystic fibrosis. Sci Am 1995; 273: 36.Google Scholar
Yankaskas, JR, Mallory, GB. Lung transplantation in cystic fibrosis: consensus conference statement. Chest 1998; 113: 217.Google Scholar
Yankaskas, JR, Marshall, BC, Sufian, B, et al. Cystic fibrosis adult care: consensus conference report. Chest 2004; 125: 1S.Google Scholar

Bibliography

Goodgame, RW. Gastrointestinal cytomegalovirus disease. Ann Intern Med 1993; 119: 924.Google Scholar
Jacobson, MA, Mills, J. Serious cytomegalovirus disease in acquired immunodeficiency syndrome (AIDS): clinical findings, diagnosis, and treatment. Ann Intern Med 1988; 108: 585.Google Scholar
Lancini, D, Faddy, HM, Flower, R, et al. Cytomegalovirus disease in immunocompetent adults. Med J Aust 2014; 201: 578.Google Scholar
Merigan, TC, Renlund, DG, Keay, S, et al. A controlled trial of ganciclovir to prevent cytomegalovirus disease after heart transplantation. N Engl J Med 1992; 326: 1182.Google Scholar
Yong, MK, Gottlieb, D, Lindsay, J, et al. New advances in the management of cytomegalovirus in allogenic haemopoietic stem cell transplantation. Intern Med J 2020; 50: 277.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • C
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • C
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • C
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×