Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T14:35:30.560Z Has data issue: false hasContentIssue false

11 - Emotion, Temperament, Vulnerability, and Development: Evidence from Nonhuman Primate Models

from SECTION THREE - NEUROENDOCRINE SYSTEM: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

Kristine Erickson
Affiliation:
Research Scientist with the Mood and Anxiety Disorders Program National Institute of Mental Health, Bethesda, Md
J. Dee Higley
Affiliation:
Professor of Psychology Brigham Young University
Jay Schulkin
Affiliation:
Research Professor in the Department of Physiology and Biophysics and Center for Brain Basis of Cognition Georgetown University, School of Medicine, Washington, DC
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

INTRODUCTION

Nonhuman primates provide the opportunity to study the development of emotional behavior, temperament, and vulnerability to psychiatric disorders under controlled conditions. Like humans, these animals display temperamental variability (Byrne & Suomi, 2002; Higley & Suomi, 1989). Manipulation of prenatal and early life environments influence behavioral, cognitive/emotional, and physiological variables in monkeys and environmental variables continue to affect these domains in adulthood. This finding has implications for vulnerability to conditions such as anxiety disorders, depression, and alcoholism in humans. Alterations in early life experience, subsequent behavioral patterns, and neuroendocrine activity are associated with anatomical and functional changes in brain regions implicated in emotional behavior and psychopathology. Linking variables observed during early development with long-term mental health outcomes in adulthood is an area of research in which nonhuman primate studies can contribute important knowledge.

A great advantage of nonhuman primate research is the ability to investigate developmental hypotheses that cannot be studied in human children. First, the ability to manipulate the environment and tightly control that environment is an advantage of nonhuman primate research. Also, procedures are possible with nonhuman primates that are too invasive and therefore anxiety-provoking or even dangerous for human children. For example, measuring plasma concentrations of substances like cortisol requires blood samples; measurement of neuropeptide or neurotransmitter metabolite concentrations requires a lumbar puncture in order to extract cerebral spinal fluid (CSF) samples. Therefore, nonhuman primates provide a way of investigating environmental effects on these types of biological variables.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 319 - 342
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.CrossRefGoogle ScholarPubMed
Arbelle, S., Benjamin, J., Golin, M., Kremer, I., Belmaker, R. H., & Ebstein, R. P. (2003). Relation of shyness in grade school children to the genotype for the long form of the serotonin transporter promoter region polymorphism. American Journal of Psychiatry, 160, 671–676.CrossRefGoogle Scholar
Arborelius, L., Owens, M. J., Plotsky, P. M., & Nemeroff, C. B. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. Journal of Endocrinology, 160, 1–12.CrossRefGoogle ScholarPubMed
Barna, I., Balint, E., Baranyi, J., Bakos, N., Makara, G. B., & Haller, J. (2003). Gender-specific effect of maternal deprivation on anxiety and corticotropin-releasing hormone mRNA expression in rats. Brain Research Bulletin, 62, 85–91.CrossRefGoogle ScholarPubMed
Bayart, F., Hayashi, K. T., Faull, K. F., Barchas, J. D., & Levine, S. (1990). Influence of maternal proximity on behavioral and physiological responses to separation in infant rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 104, 98–107.CrossRefGoogle Scholar
Biederman, J., Hirshfeld-Becker, D. R., Rosenbaum, J. F., Herot, C., Friedman, D., Snidman, N., Kagan, J., & Faraone, S. V. (2001). Further evidence of association between behavioral inhibition and social anxiety in children. American Journal of Psychiatry, 158, 1673–1679.CrossRefGoogle ScholarPubMed
Bouzat, C., & Barrantes, F. J. (1996). Modulation of muscle nicotinic acetylcholine receptors by the glucocorticoid hydrocortisone: Possible allosteric mechanism of channel blockade. Journal of Biological Chemistry, 271, 25835–25841.CrossRefGoogle ScholarPubMed
Brake, W. G., Noel, M. B., Boksa, P., & Gratton, A. (1997). Influence of perinatal factors on the nucleus accumbens dopamine response to repeated stress during adulthood: An electrochemical study in the rat. Neuroscience, 77, 1067–1076.CrossRefGoogle ScholarPubMed
Breese, G. R., Smith, R. D., Mueller, R. A., Howard, J. L., Prange, A. J. Jr., Lipton, M. A., Young, L. D., McKinney, W. T., & Lewis, J. K. (1973). Induction of adrenal catecholamine synthesizing enzymes following mother-infant separation. Nature, New Biology, 246, 94–96.CrossRefGoogle Scholar
Brooke, S. M., Haas-Johnson, A. M., Kaplan, J. R., & Sapolsky, R. M. (1994). Characterization of mineralocorticoid and glucocorticoid receptors in primate brain. Brain Research, 637, 303–307.CrossRefGoogle ScholarPubMed
Brunson, K. L., Avishai-Eliner, S., Hatalski, C. G., & Baram, T. Z. (2001). Neurobiology of the stress response early in life: Evolution of a concept and the role of corticotropin releasing hormone. Molecular Psychiatry, 6, 647–656.CrossRefGoogle ScholarPubMed
Buchanan, T. W., & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26, 307–317.CrossRefGoogle ScholarPubMed
Byrne, G., & Suomi, S. (2002). Cortisol reactivity and its relation to homecage behavior and personality ratings in tufted capuchin (Cebus apella) juveniles from birth to six years of age. Psychoneuroendocrinology, 27, 139–154.CrossRefGoogle ScholarPubMed
Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., Wu, J., & McGaugh, J. L. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Sciences of the United States of America, 93, 8016–8021.CrossRefGoogle ScholarPubMed
Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371, 702–704.CrossRefGoogle ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95, 5335–5340.CrossRefGoogle ScholarPubMed
Cameron, O. G., Addy, R. O., & Malitz, D. (1985). Effects of ACTH and prednisone on mood, incidence and time of onset. International Journal Psychiatry in Medicine, 15, 213–223.CrossRefGoogle ScholarPubMed
Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D., & Cahill, L. (2000). Event-related activation in the human amygdala associates with later memory for individual emotional experience. Journal of Neuroscience, 20, RC99.CrossRefGoogle ScholarPubMed
Chapman, W., Schroeder, H., Guyer, G., Brazier, M., Fager, C., Poppen, J., Solomon, H., & Yakolev, P. (1954). Physiological evidence concerning the importance of the amygdaloid nuclear region in the integration of circulating function and emotion in man. Science, 129, 949–950.CrossRefGoogle Scholar
Charney, D., & Drevets, W. (2002). The neurobiological basis of anxiety disorders. In Davis, K., Charney, D., Coyle, J., & Nemeroff, C. (Eds.), Psychopharmacology: The fifth generation of progress (pp. 901–930). New York: Lippincott, Williams & Wilkins.Google Scholar
Clarke, A. S. (1993). Social rearing effects on HPA axis activity over early development and in response to stress in rhesus monkeys. Developmental Psychobiology, 26, 433–446.CrossRefGoogle ScholarPubMed
Cook, C. J. (2002). Glucocorticoid feedback increases the sensitivity of the limbic system to stress. Physiology and Behavior, 75, 455–464.CrossRefGoogle ScholarPubMed
Coplan, J. D., Andrews, M. W., Rosenblum, L. A., Owens, M. J., Friedman, S., Gorman, J. M., & Nemeroff, C. B. (1996). Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences of the United States of America, 93, 1619–1623.CrossRefGoogle ScholarPubMed
Corodimas, K. P., LeDoux, J. E., Gold, P. W., & Schulkin, J. (1994). Corticosterone potentiation of conditioned fear in rats. Annals of the New York Academy of Sciences, 746, 392–393.CrossRefGoogle ScholarPubMed
Dallman, M. F., Strack, A. M., Akana, S. F., Bradbury, M. J., Hanson, E. S., Scribner, K. A., & Smith, M. (1993). Feast and famine: Critical role of glucocorticoids with insulin in daily energy flow. Frontiers in Neuroendocrinology, 14, 303–347.CrossRefGoogle ScholarPubMed
Davis, M., & Whalen, P. J. (2001). The amygdala, vigilance and emotion. Molecular Psychiatry, 6, 13–34.CrossRefGoogle ScholarPubMed
Quervain, D. J., Roozendaal, B., & McGaugh, J. L. (1998). Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature, 394, 787–790.Google ScholarPubMed
Drevets, W. C., Price, J. L., Bardgett, M. E., Reich, T., Todd, R. D., & Raichle, M. E. (2002). Glucose metabolism in the amygdala in depression: Relationship to diagnostic subtype and plasma cortisol levels. Pharmacology, Biochemistry and Behavior, 71, 431–447.CrossRefGoogle ScholarPubMed
Drevets, W. C., Price, J., Simpson, J., Todd, R., Reich, T., & Raichle, M. (1996). State- and trait-like neuroimaging abnormalities in depression: Effects of antidepressant treatment. Society for Neuroscience Abstract, 22, 266.Google Scholar
Drevets, W. C., Price, J. L., Simpson, J. R., Todd, R. D., Reich, T., Bardgett, M. E., & Raichle, M. E. (1997). Amygdala hypermetabolism in unipolar and bipolar depression with plasma cortisol. Society for Neuroscience Abstract, 23, 1407.Google Scholar
Eriksen, H. R., Olff, M., Murison, R., & Ursin, H. (1999). The time dimension in stress responses: Relevance for survival and health. Psychiatry Research, 85, 39–50.CrossRefGoogle ScholarPubMed
Fischer, H., Andersson, J. L., Furmark, T., & Fredrikson, M. (2000). Fear conditioning and brain activity: A positron emission tomography study in humans. Behavioral Neuroscience, 114, 671–680.CrossRefGoogle ScholarPubMed
Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., Long, J. M. & Stewart, S. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66, 1770–1784.CrossRefGoogle ScholarPubMed
Fumagalli, F., Jones, S. R., Caron, M. G., Seidler, F. J., & Slotkin, T. A. (1996). Expression of mRNA coding for the serotonin transporter in aged vs. young rat brain: Differential effects of glucocorticoids. Brain Research, 719, 225–228.CrossRefGoogle ScholarPubMed
Fuxe, K., Wikstrom, A., Okret, S., Agnati, L., Harfstrand, A., Yu, Z., Granholm, L., Zoli, M., Vale, W., & Gustafsson, J. (1985). Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology, 117, 1803–1812.CrossRefGoogle ScholarPubMed
Gabry, K. E., Erickson, K., Champoux, M., Chrousos, G. P., Schulkin, J., Gold, P. W. & Higley, J. D. (unpublished data). Increased CSF corticotropin-releasing hormone and decreased neuropeptide Y concentrations in response to psychosocial stress.
Gloor, P. (1992). Role of the amygdala in temporal lobe epilepsy. Aggleton, J.. (Ed.), The amygdala: Neurobiological aspects of emotion, memory and mental dysfunction. (pp. 339–352). New York: Wiley-Liss.Google Scholar
Goldstein, L. E., Rasmusson, A. M., Bunney, B. S., & Roth, R. H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. Journal of Neuroscience, 16, 4787–4798.CrossRefGoogle ScholarPubMed
Granger, D. A., Weisz, J. R., & Kauneckis, D. (1994). Neuroendocrine reactivity, internalizing behavior problems, and control-related cognitions in clinic-referred children and adolescents. Journal of Abnormal Psychology, 103, 267–276.CrossRefGoogle ScholarPubMed
Gunnar, M. (1994). Psychoendocrine studies of temperament and stress in early childhood: Expanding current models. In Wachs, T. (Ed.), Temperament: Individual differences at the interface of biology and behavior (pp. 175–198). Washington, DC: American Psychological Association.Google Scholar
Habib, K. E., Weld, K. P., Rice, K. C., Pushkas, J., Champoux, M., Listwak, S., Webster, E. L., Atkinson, A. J., Schulkin, J., Contoreggi, C., Chrousos, G. P., McCann, S. M., Suomi, S. J., Higley, J. D., & Gold, P. W. (2000). Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proceedings of the National Academy of Sciences of the United States of America, 97, 6079–6084.CrossRefGoogle ScholarPubMed
Heilig, M., Koob, G. F., Ekman, R., & Britton, K. T. (1994). Corticotropin-releasing factor and neuropeptide Y: role in emotional integration. Trends in Neuroscience, 17, 80–85.CrossRefGoogle ScholarPubMed
Heilig, M., McLeod, S., Brot, M., Heinrichs, S. C., Menzaghi, F., Koob, G. F., & Britton, K. T. (1993). Anxiolytic-like action of neuropeptide Y: Mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology, 8, 357–363.CrossRefGoogle ScholarPubMed
Heim, C., Owens, M. J., Plotsky, P. M., & Nemeroff, C. B. (1997). Persistent changes in corticotropin-releasing factor systems due to early life stress: Relationship to the pathophysiology of major depression and post-traumatic stress disorder. Psychopharmacology Bulletin, 33, 185–192.Google ScholarPubMed
Higley, J. D., & Bennett, A. J. (1999). Central nervous system serotonin and personality as variables contributing to excessive alcohol consumption in non-human primates. Alcohol and Alcoholism, 34, 402–418.CrossRefGoogle ScholarPubMed
Higley, J. D., Hasert, M. F., Suomi, S. J., & Linnoila, M. (1991). Nonhuman primate model of alcohol abuse: Effects of early experience, personality, and stress on alcohol consumption. Proceedings of the National Academy of Sciences of the United States of America, 88, 7261–7265.CrossRefGoogle ScholarPubMed
Higley, J. D., Hasert, M., Suomi, S., & Linnoila, M. (1998). The serotonin reuptake inhibitor sertraline reduces excessive alcohol consumption in nonhuman primates: Effect of stress. Neuropsychopharmacology, 18, 431–443.CrossRefGoogle ScholarPubMed
Higley, J. D., & Linnoila, M. (1997a). Low central nervous system serotonergic activity is traitlike and correlates with impulsive behavior. A nonhuman primate model investigating genetic and environmental influences on neurotransmission. Annals of the New York Academy of Sciences, 836, 39–56.CrossRefGoogle Scholar
Higley, J. D., & Linnoila, M. (1997b). A nonhuman primate model of excessive alcohol intake: Personality and neurobiological parallels of type I- and type II-like alcoholism. Recent Developments in Alcoholism, 13, 191–219.Google Scholar
Higley, J. D., & Suomi, S. J. (1989). Temperamental reactivity in non-human primates. In Kohnstamm, G. A., Bates, J. E. & Rothbart, M. K. (eds.), Temperament in childhood (pp. 153–167). New York: John Wiley & Sons.Google Scholar
Higley, J. D., Suomi, S. J., & Linnoila, M. (1992). A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32, 127–145.CrossRefGoogle ScholarPubMed
Higley, J. D., Suomi, S. J., & Linnoila, M. (1996a). A nonhuman primate model of type II alcoholism? Part 2. Diminished social competence and excessive aggression correlates with low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations. Alcoholism: Clinical and Experimental Research, 20, 643–650.CrossRefGoogle Scholar
Higley, J. D., Suomi, S. J., & Linnoila, M. (1996b). A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption. Alcoholism: Clinical and Experimental Research, 20, 629–642.CrossRefGoogle Scholar
Husum, H., & Mathe, A. A. (2002). Early life stress changes concentrations of neuropeptide Y and corticotropin-releasing hormone in adult rat brain: Lithium treatment modifies these changes. Neuropsychopharmacology, 27, 756–764.CrossRefGoogle ScholarPubMed
Iidaka, T., Omori, M., Murata, T., Kosaka, H., Yonekura, Y., Okada, T., & Sadato, N. (2001). Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. Journal of Cognitive Neuroscience, 13, 1035–1047.CrossRefGoogle ScholarPubMed
Jones, R., Beuving, G., & Blokhuis, H. (1988). Tonic immobility and heterophil/lymphocyte responses of the domestic fowl to corticosterone infusion. Physiology and Behavior, 42, 249–253.CrossRefGoogle ScholarPubMed
Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological bases of childhood shyness. Science, 240, 167–171.CrossRefGoogle ScholarPubMed
Kagan, J., Snidman, N., & Arcus, D. (1998). Childhood derivatives of high and low reactivity in infancy. Child Development, 69, 1483–1493.CrossRefGoogle ScholarPubMed
Kalin, N. H., Larson, C., Shelton, S. E., & Davidson, R. J. (1998a). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behavioral Neuroscience, 112, 286–292.CrossRefGoogle Scholar
Kalin, N. H., Shelton, S. E., & Davidson, R. J. (2000). Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament. Biological Psychiatry, 47, 579–585.CrossRefGoogle ScholarPubMed
Kalin, N. H., Shelton, S. E., Rickman, M., & Davidson, R. J. (1998b). Individual differences in freezing and cortisol in infant and mother rhesus monkeys. Behavioral Neuroscience, 112, 251–254.CrossRefGoogle Scholar
Kalin, N. H., Takahashi, L. K., & Chen, F. L. (1994). Restraint stress increases corticotropin-releasing hormone mRNA content in the amygdala and paraventricular nucleus. Brain Research, 656, 182–186.CrossRefGoogle ScholarPubMed
Khani, S., & Tayek, J. (2001). Cortisol increases gluconeogenesis in humans: Its role in the metabolic syndrome. Clinical Science (London), 101, 739–747.CrossRefGoogle ScholarPubMed
Koob, G. F. (1999). Stress, corticotropin-releasing factor, and drug addiction. Annals of the New York Academy of Sciences, 897, 27–45.CrossRefGoogle ScholarPubMed
LeDoux, J. (1996). The emotional brain. New York: Simon & Schuster.Google Scholar
Lee, Y., & Davis, M. (1997). Role of the hippocampus, the bed nucleus of the stria terminalis, & the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. Journal of Neuroscience, 17, 6434–6446.CrossRefGoogle ScholarPubMed
Leverenz, J., Wilkinson, C., Raskind, M., & Peskind, E. (2001). Immunihistochemical localization of glucocorticoid and mineralocorticoid receptors in the primate hippocampus and amygdala. Society for Neuroscience Abstract, 708.Google Scholar
Leverenz, J. B., Wilkinson, C. W., Wamble, M., Corbin, S., Grabber, J. E., Raskind, M. A., & Peskind, E. R. (1999). Effect of chronic high-dose exogenous cortisol on hippocampal neuronal number in aged nonhuman primates. Journal of Neuroscience, 19, 2356–2361.CrossRefGoogle ScholarPubMed
Levine, S. (2001). Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiology and Behavior, 73, 255–260.CrossRefGoogle ScholarPubMed
Lupien, S., & McEwen, B. (1998). The acute effects of corticosteroids on cognition, integration of animal and human model studies. Brain Research Reviews, 24, 1–27.CrossRefGoogle Scholar
Makino, S., Gold, P. W., & Schulkin, J. (1994a). Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Research, 640, 105–112.CrossRefGoogle Scholar
Makino, S., Gold, P. W., & Schulkin, J. (1994b). Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis: Comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Research, 657, 141–149.CrossRefGoogle Scholar
McEwen, B. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171–179.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2000). Memory–a century of consolidation. Science, 287, 248–251.CrossRefGoogle ScholarPubMed
McKinney, W. T. (1984). Animal models of depression: An overview. Psychiatric Developments, 2, 77–96.Google ScholarPubMed
Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J. R., & Plotsky, P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 49–72.CrossRefGoogle ScholarPubMed
Meijer, O. C., & Kloet, E. R. (1994). Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. European Journal of Pharmacology, 266, 255–61.CrossRefGoogle ScholarPubMed
Michiels, V., & Cluydts, R. (2001). Neuropsychological functioning in chronic fatigue syndrome: A review. Acta Psychiatrica Scandinavica, 103, 84–93.CrossRefGoogle ScholarPubMed
Mineka, S., & Suomi, S. J. (1978). Social separation in monkeys. Psychological Bulletin 85, 1376–1400.CrossRefGoogle ScholarPubMed
Moghaddam, B., Bolinao, M. L., Stein-Behrens, B., & Sapolsky, R. (1994). Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Research, 655, 251–254.CrossRefGoogle ScholarPubMed
Patel, P. D., Lopez, J. F., Lyons, D. M., Burke, S., Wallace, M., & Schatzberg, A. F. (2000). Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. Journal of Psychiatric Research, 34, 383–392.CrossRefGoogle ScholarPubMed
Patterson, T., Zavosh, A., Schenk, J., Wilkinson, C., & Figlewicz, D. (1997). Acute corticosterone incubation in vitro inhibits the function of the dopamine transporter in nucleus accumbens but not striatum of the rat brain. Society for Neuroscience Abstract. 23, 693.Google Scholar
Plihal, W., & Born, J. (1999). Memory consolidation in human sleep depends on inhibition of glucocorticoid release. Neuroreport, 10, 2741–2747.CrossRefGoogle ScholarPubMed
Plihal, W., Krug, R., Pietrowsky, R., Fehm, H. L., & Born, J. (1996). Corticosteroid receptor mediated effects on mood in humans. Psychoneuroendocrinology, 21, 515–523.CrossRefGoogle ScholarPubMed
Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Research, Molecular Brain Research 18, 195–200.CrossRefGoogle ScholarPubMed
Price, J. L. (1999). Prefrontal cortical networks related to visceral function and mood. Annals of the New York Academy of Sciences, 877, 383–396.CrossRefGoogle Scholar
Quirarte, G. L., Roozendaal, B., & McGaugh, J. L. (1997). Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 94, 14048–14053.CrossRefGoogle ScholarPubMed
Reul, J., & Kloet, E. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 2505–2511.CrossRefGoogle ScholarPubMed
Roozendaal, B. (2000). 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25, 213–238.CrossRefGoogle Scholar
Roozendaal, B., Quervain, D. J., Ferry, B., Setlow, B., & McGaugh, J. L. (2001). Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. Journal of Neuroscience 21, 2518–2525.CrossRefGoogle ScholarPubMed
Roozendaal, B., & McGaugh, J. L. (1997). Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiology of Learning and Memory, 67, 176–179.CrossRefGoogle Scholar
Rosenbaum, J. F., Biederman, J., Bolduc-Murphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., & Kagan, J. (1993). Behavioral inhibition in childhood: A risk factor for anxiety disorders. Harvard Review of Psychiatry, 1, 2–16.CrossRefGoogle ScholarPubMed
Rosenbaum, J. F., Biederman, J., Hirshfeld-Becker, D. R., Kagan, J., Snidman, N., Friedman, D., Nineberg, A., Gallery, D. J., & Faraone, S. V. (2000). A controlled study of behavioral inhibition in children of parents with panic disorder and depression. American Journal of Psychiatry, 157, 2002–2010.CrossRefGoogle ScholarPubMed
Rots, N. Y., Jong, J., Workel, J. O., Levine, S., Cools, A. R., & Kloet, E. R. (1996). Neonatal maternally deprived rats have as adults elevated basal pituitary-adrenal activity and enhanced susceptibility to apomorphine. Journal of Neuroendocrinology, 8, 501–506.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (1999). Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. Journal of Comparative Neurology, 408, 365–77.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain: Relative absence of glucocorticoid receptors in the hippocampal formation. Journal of Neuroscience, 20, 4657–4668.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57, 925–35.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10, 2897–2902.CrossRefGoogle ScholarPubMed
Sarrieau, A., Dussaillant, M., Agid, F., Philibert, D., Agid, Y., & Rostene, W. (1986). Autoradiographic localization of glucocorticoid and progesterone binding sites in the human post-mortem brain. Journal of Steroid Biochemistry, 25, 717–721.CrossRefGoogle ScholarPubMed
Sarrieau, A., Dussaillant, M., Sapolsky, R. M., Aitken, D. H., Olivier, A., Lal, S., Rostene, W. H., Quirion, R., & Meaney, M. J. (1988). Glucocorticoid binding sites in human temporal cortex. Brain Research, 442, 157–160.CrossRefGoogle ScholarPubMed
Sawchenko, P. E., Imaki, T., Potter, E., Kovacs, K., Imaki, J., & Vale, W. (1993). The functional neuroanatomy of corticotropin-releasing factor. Ciba Foundation Symposium, 172, 5–21.Google ScholarPubMed
Schmidt, L. A., Fox, N. A., Goldberg, M. C., Smith, C. C., & Schulkin, J. (1999a). Effects of acute prednisone administration on memory, attention and emotion in healthy human adults. Psychoneuroendocrinology, 24, 461–483.CrossRefGoogle Scholar
Schmidt, L. A., Fox, N. A., Rubin, K. H., Sternberg, E. M., Gold, P. W., Smith, C. C., & Schulkin, J. (1997). Behavioral and neuroendocrine responses in shy children. Developmental Psychobiology, 30, 127–140.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Schmidt, L. A., Fox, N. A., Schulkin, J., & Gold, P. W. (1999b). Behavioral and psychophysiological correlates of self-presentation in temperamentally shy children. Developmental Psychobiology, 35, 119–135.3.0.CO;2-G>CrossRefGoogle Scholar
Schneider, M. L., Clarke, A. S., Kraemer, G. W., Roughton, E. C., Lubach, G. R., Rimm-Kaufman, S., Schmidt, D., & Ebert, M. (1998). Prenatal stress alters brain biogenic amine levels in primates. Developmental Psychobiology, 10, 427–40.CrossRefGoogle ScholarPubMed
Schulkin, J. (1999). The neuroendocrine regulation of behavior. New York: Cambridge University Press.Google Scholar
Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants grown up: Adult amygdalar response to novelty. Science 300, 1952–1953.CrossRefGoogle ScholarPubMed
Seckl, J. R., Dickson, K. L., Yates, C., & Fink, G. (1991). Distribution of glucocorticoid and mineralocorticoid receptor messenger RNA expression in human postmortem hippocampus. Brain Research, 561, 332–337.CrossRefGoogle ScholarPubMed
Shannon, C., Champoux, M., & Suomi, S. J. (1998). Rearing condition and plasma cortisol in rhesus monkey infants. American Journal of Primatology, 46, 311–321.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Shepard, J. D., & Barron, K. W. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Research, 861, 288–295.CrossRefGoogle ScholarPubMed
Starkman, M. N., Giordani, B., Berent, S., Schork, M. A., & Schteingart, D. E. (2001). Elevated cortisol levels in Cushing's disease are associated with cognitive decrements. Psychosomatic Medicine, 63, 985–993.CrossRefGoogle ScholarPubMed
Starkman, M. N., & Schteingart, D. E. (1981). Neuropsychiatric manifestations of patients with Cushing's syndrome: Relationship to cortisol and adrenocorticotropic hormone levels. Archives of Internal Medicine, 141, 215–219.CrossRefGoogle ScholarPubMed
Strome, E. M., Wheler, G. H., Higley, J. D., Loriaux, D. L., Suomi, S. J., & Doudet, D. J. (2002). Intracerebroventricular corticotropin-releasing factor increases limbic glucose metabolism and has social context-dependent behavioral effects in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 99, 15749–15754.CrossRefGoogle ScholarPubMed
Suomi, S. (1991). Primate separation models of affective disorders. In Madden, J. IV (Ed.), Neurobiology of learning, emotion and affect. (pp. 195–214). New York: Raven Press.Google Scholar
Suomi, S. J., Eisele, C. D., Grady, S. A., & Harlow, H. F. (1975). Depressive behavior in adult monkeys following separation from family environment. Journal of Abnormal Psychology, 84, 576–578.CrossRefGoogle ScholarPubMed
Swanson, L. W., & Simmons, D. M. (1989). Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: A Hybridization histochemical study in the rat. Journal of Comparative Neurology, 285, 413–435.CrossRefGoogle ScholarPubMed
Ameringen, M., Mancini, C., & Oakman, J. M. (1998). The relationship of behavioral inhibition and shyness to anxiety disorder. Journal of Nervous and Mental Disorders, 186, 425–431.CrossRefGoogle ScholarPubMed
Honk, J., Hermans, E. J., Alfonso, d' A. A., Schutter, D. J., Doornen, L., & Haan, E. H. (2002). A left-prefrontal lateralized, sympathetic mechanism directs attention towards social threat in humans: Evidence from repetitive transcranial magnetic stimulation. Neuroscience Letters, 319, 99–102.CrossRefGoogle ScholarPubMed
Honk, J., Tuiten, A., Hout, M., Koppeschaar, H., Thijssen, J., Haan, E., & Verbaten, R. (2000). Conscious and preconscious selective attention to social threat: Different neuroendocrine response patterns. Psychoneuroendocrinology, 25, 577–591.CrossRefGoogle ScholarPubMed
Watts, A. G., & Sanchez-Watts, G. (1995). Region-specific regulation of neuropeptide mRNAs in rat limbic forebrain neurones by aldosterone and corticosterone. Journal of Physiology, 484, 721–736.CrossRefGoogle ScholarPubMed
Wellman, C. L. (2001). Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. Journal of Neurobiology, 49, 245–253.CrossRefGoogle ScholarPubMed
Westrin, A., Ekman, R., Hout, M., Koppeschaar, H., Thijssen, J., Haan, E., & Verbaten, R. (1999). Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) plasma levels in mood disorder patients with a recent suicide attempt. European Neuropsychopharmacology, 9, 205–211.CrossRefGoogle ScholarPubMed
Widdowson, P. S., Ordway, G. A., & Halaris, A. E. (1992). Reduced neuropeptide Y concentrations in suicide brain. Journal of Neurochemistry, 59, 73–80.CrossRefGoogle ScholarPubMed
Wingfield, J. C., & Grimm, A. S. (1977). Seasonal changes in plasma cortisol, testosterone and oestradiol-17beta-in the plaice: Pleuronectes platessa L. General and Comparative Endocrinology, 31, 1–11.CrossRefGoogle ScholarPubMed
Wolkowitz, O. M., Reus, V. I., Weingartner, H., Thompson, K., Breier, A., Doran, A., Rubinow, D., & Pickar, D. (1990). Cognitive effects of corticosteroids. American Journal of Psychiatry, 147, 1297–1303.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×