Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-05T13:18:14.219Z Has data issue: false hasContentIssue false

26 - Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against HIV-1 and Cancer Therapies

from Part V - Genome Editing in Disease Biology

Published online by Cambridge University Press:  30 July 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 401 - 413
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahimi, P, Qin, L, Chang, WG, et al. 2016. Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight 1: e85293.CrossRefGoogle ScholarPubMed
Ahmad, G, Amiji, M. 2018. Use of CRISPR-Cas9 gene-editing tools for developing models in drug discovery. Drug Discov Today. Doi: 10.1016/j.drudis. 2018.01.04.CrossRefGoogle Scholar
Alagia, A, Eritja, R. 2016. siRNA and RNAi optimization. Wiley Interdiscipl Rev RNA 7: 316329.CrossRefGoogle ScholarPubMed
Assis, AF, Oliveira, EH, Donate, PB, et al. 2014. What is the transcriptome and how is it evaluated? In Passos, GA, ed., Transcriptomics in Health and Disease, Basel, Switzerland: Springer International Publishing, 344 pp.Google Scholar
Barré-Sinoussi, F, Chermann, JC, Rey, F, et al. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868871.CrossRefGoogle ScholarPubMed
Burnett, JC, Rossi, JJ, Tiemann, K. 2011. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6: 11301146.CrossRefGoogle ScholarPubMed
Chen, C, Liu, Y, Rappaport, AR, et al. 2014. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25: 652665.CrossRefGoogle ScholarPubMed
Chen, DS, Irving, BA, Hodi, FS. 2012. Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death 1. Clin Cancer Res 18: 65806587.CrossRefGoogle ScholarPubMed
Chen, F, Wang, Y, Yuan, Y, et al. 2015. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas 9-mediated gene targeting. J Genet Genom 42: 437444.CrossRefGoogle Scholar
Cheong, T-C, Compagno, M, Chiarle, R. 2016. Editing of mouse and human immunoglobulin genes by CRISPR-Cas 9 system. Nat Comm 7: 10934.CrossRefGoogle Scholar
Chun, TW, Carrut, L, Finzi, D, et al. 1997. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183188.CrossRefGoogle ScholarPubMed
Chun, TW, Justement, JS, Lempicki, RA, et al. 2003. Gene expression and viral production in latently infected, resting CD4+ T cells in viremic versus anemic HIV-infected individuals. Proc Natl Acad Sci USA 100: 19081913.CrossRefGoogle Scholar
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Cyranoski, D. 2016. First trial of CRISPR in people: Chinese team approved to test gene-edited cells in people with lung cancer. Nature 535: 476477.CrossRefGoogle Scholar
Didigu, CA, Wilen, CB, Wang, J. 2014. Simultaneous zinc-finger nuclease editing of the HIV-1 coreceptors CCR5 and CXCR4 protects CD4+ T cells from HIV-1 infection. Blood 123: 6169.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas 9. Science 346: 1258096.CrossRefGoogle Scholar
Finzi, D, Hermankova, M, Pierson, T, et al. 1997. Identification of a reservoir for HIV-1 in patients in highly active antiretroviral therapy. Science 278: 12951300.CrossRefGoogle ScholarPubMed
Gallo, RC, Sarin, PS, Gelmann, EP, et al. 1983. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome. Science 220: 865867.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Hall, B, Limaye, A, Kulkarni, AB. 2009. Overview: generation of gene knockout mice. Curr Protoc Cell Biol Chapter 19: Unit 19.12.19.12.1–17.CrossRefGoogle Scholar
Harrison, PT, Hart, S. 2017. A beginner’s guide to gene editing. Exp Physiol. Doi: 10.1113/EP086047.CrossRefGoogle Scholar
Heckl, D, Kowalczyk, MS, Yudovich, D, et al. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32: 941946.CrossRefGoogle ScholarPubMed
Hermankova, M, Siliciano, JD, Zhou, Y, et al. 2003. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol 77: 73887392.CrossRefGoogle ScholarPubMed
Hochheiser, K, Kueh, AJ, Gebhardt, T, et al. 2018. CRISPR-Cas9: a tool for immunological research. Eur J Immunol. Doi: 10.1002/eji.201747131.CrossRefGoogle Scholar
Hou, W, Fang, C, Liu, J, et al. 2015. Molecular insights into the inhibition of HIV-1 infection using a CD4 domain-1-specific monoclonal antibody. Antivir Res 122: 101111.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and application of CRISPR-Cas9 for genome engineering. Cell 157: 12621278.CrossRefGoogle ScholarPubMed
Hu, W, Kaminski, R, Yang, F. et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 111: 1146111466.CrossRefGoogle ScholarPubMed
Hütther, G, Nowak, D, Mossner, M, et al. 2009. Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. N Engl J Med 360: 692698.CrossRefGoogle Scholar
Jia, Y, Chen, L, Ma, Y, et al. 2015. To know how a gene works, we need to redefine it first but then, more importantly, to let the cell itself decide how to transcribe and process its RNAs. Int J Biol Sci 11: 14131423.CrossRefGoogle ScholarPubMed
Kaminski, R, Chen, Y, Fischer, T, et al. 2016. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas 9 gene editing. Sci Rep 6: 22555.CrossRefGoogle ScholarPubMed
Kang, H, Minder, P, Park, MA, et al. 2015. CCR-5 disruption in induced pluripotent stem cells using CRISPR/Cas 9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids 4, e268.CrossRefGoogle Scholar
Kato, T, Takada, S. 2016. In vivo and in vitro disease modeling with CRISPR/Cas 9. Brief Funct Genom 2016: 112.Google Scholar
Kawai, T, Akira, S. 2010. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11: 373384.CrossRefGoogle ScholarPubMed
Khalili, K, Kaminski, R, Gordon, J, et al. 2015. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 21: 310321.CrossRefGoogle ScholarPubMed
Kim, JM, Chen, DS. 2016. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27: 14921504.CrossRefGoogle Scholar
Kondo, T, Kawai, T, Akira, S. 2012. Dissecting negative regulation of toll-like receptor signaling. Trends Immunol 33: 449458.CrossRefGoogle ScholarPubMed
Li, C, Guan, X, Jin, W, et al. 2015. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas 9. J Gen Virol 96: 23812393.CrossRefGoogle Scholar
Liu, R, Paxton, WA, Choe, S, et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367377.CrossRefGoogle ScholarPubMed
Mandal, PK, Ferreira, LM, Collins, R, et al. 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas 9. Cell Stem Cell 15: 643652.CrossRefGoogle Scholar
Mali, P, Aach, J, Stranges, PB, et al. 2013a. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31: 833838.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013b. RNA-guided human genome engineering via Cas9. Science 339: 823826.CrossRefGoogle ScholarPubMed
Malina, A, Mills, JR, Cencic, R, et al. 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Devel 27: 26022614.CrossRefGoogle ScholarPubMed
Reardon, S. 2016. First CRISPR clinical trial gets green light from US panel: the technique’s first test in people could begin as early as the end of the year. Nature News, 22 June. Doi:10.1038/nature.2016.20137.CrossRefGoogle Scholar
Samson, M, Libert, F, Doranz, BJ, et al. 1996. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722725.CrossRefGoogle ScholarPubMed
Sánchez-Rivera, FJ, Jacks, T. 2015. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15: 387395.CrossRefGoogle ScholarPubMed
Sánchez-Rivera, FJ, Papagiannakopoulos, T, Romero, R, et al. 2014. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516: 428431.CrossRefGoogle ScholarPubMed
Schumann, K, Lin, S, Boyer, E, et al. 2015. Generation of knock-in primary human T cells using Cas 9 ribonucleoproteins. Proc Natl Acad Sci USA 112: 1043710442.CrossRefGoogle Scholar
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 8487.CrossRefGoogle ScholarPubMed
Siliciano, JD, Kajdas, J, Finzi, D, et al. 2003. Long-term follow up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727728.CrossRefGoogle ScholarPubMed
Su, S, Hu, B, Shao, J, et al. 2016. Crispr-Cas 9 medaited efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6: 20070.CrossRefGoogle Scholar
Tang, S, Chen, T, Yu, Z, et al. 2014. RasGRP3 limits toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Comm 5: 4657.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, W, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV-1. N Engl J Med 370: 901910.CrossRefGoogle Scholar
Thurtle-Schmidt, DM, Lo, TW. 2018. Molecular biology at the cutting edge: a review on CRISPR-Cas9 gene editing for undergraduates. Biochem Mol Biol Educ. Doi: 10.1002/bmb.21108.CrossRefGoogle Scholar
Wang, G, Zhao, N, Berkhout, B, et al. 2016. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther 24: 522526.CrossRefGoogle ScholarPubMed
Wong, JK, Hezaret, M, Günthard, HF, et al. 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 12911295.CrossRefGoogle ScholarPubMed
Xia, P, Wang, S, Xiang, Z, et al. 2015. IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. Nat Comm 6: 8132.CrossRefGoogle ScholarPubMed
Xue, HY, Ji, LJ, Gao, AM, et al. 2015. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet 53: 9197.CrossRefGoogle ScholarPubMed
Xue, W, Chen, S, Yin, H, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514: 380384.CrossRefGoogle ScholarPubMed
Ye, L, Wang, J, Beyer, AI, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 111: 95919596.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×