Skip to main content Accessibility help
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Harb, Mostapha Mohammad and Dell'Acqua, Fabio 2017. Remote Sensing in Multirisk Assessment: Improving disaster preparedness. IEEE Geoscience and Remote Sensing Magazine, Vol. 5, Issue. 1, p. 53.

    Marana, Barbara 2017. An ArcGIS Geo-Morphological Approach for Snow Avalanche Zoning and Risk Estimation in the Province of Bergamo. Journal of Geographic Information System, Vol. 09, Issue. 02, p. 83.

    Keiler, Margreth and Fuchs, Sven 2016. Geomorphology and Society. p. 165.

    Bernknopf, Richard and Amos, Paul 2014. Measuring earthquake risk concentration for hazard mitigation. Natural Hazards, Vol. 74, Issue. 3, p. 2163.

    Fuchs, Sven Keiler, Margreth Sokratov, Sergey and Shnyparkov, Alexander 2013. Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards, Vol. 68, Issue. 3, p. 1217.

    Birkmann, J. Cardona, O. D. Carreño, M. L. Barbat, A. H. Pelling, M. Schneiderbauer, S. Kienberger, S. Keiler, M. Alexander, D. Zeil, P. and Welle, T. 2013. Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards, Vol. 67, Issue. 2, p. 193.

    Varazanashvili, Otar Tsereteli, Nino Amiranashvili, Avtandil Tsereteli, Emil Elizbarashvili, Elizbar Dolidze, Jemal Qaldani, Lado Saluqvadze, Manana Adamia, Shota Arevadze, Nika and Gventcadze, Aleksandre 2012. Vulnerability, hazards and multiple risk assessment for Georgia. Natural Hazards, Vol. 64, Issue. 3, p. 2021.

    Holub, Markus Suda, Jürgen and Fuchs, Sven 2012. Mountain hazards: reducing vulnerability by adapted building design. Environmental Earth Sciences, Vol. 66, Issue. 7, p. 1853.

    Kappes, Melanie S. Keiler, Margreth von Elverfeldt, Kirsten and Glade, Thomas 2012. Challenges of analyzing multi-hazard risk: a review. Natural Hazards, Vol. 64, Issue. 2, p. 1925.

    Papathoma-Köhle, M. Kappes, M. Keiler, M. and Glade, T. 2011. Physical vulnerability assessment for alpine hazards: state of the art and future needs. Natural Hazards, Vol. 58, Issue. 2, p. 645.

    ×
  • Print publication year: 2010
  • Online publication date: January 2011

5 - Review and future challenges in snow avalanche risk analysis

Summary

Background

Snow avalanches pose a major threat to alpine communities because they affect safety in villages and on traffic routes. Therefore, dealing with avalanche danger has a long tradition in Alpine countries. In most countries, avalanches contribute only to a small degree to the overall risk of a country. For Switzerland, for example, avalanche risk represents only 2% of all risks (BABS, 2003).

Snow avalanche formation, geomorphology and land use planning

Snow avalanches are a type of fast-moving mass movement. They can also contain rocks, soil, vegetation or ice. Avalanche size is classified according to its destructive power (McClung and Schaerer, 2006). A medium-sized slab avalanche may involve 10,000 m3 of snow, equivalent to a mass of about 2,000 tons (snow density 200 kg/m3). Avalanche speeds vary between 50 and 200 km/h for large dry snow avalanches, whereas wet slides are denser and slower (20–100 km/h). If the avalanche path is steep, dry snow avalanches generate a powder cloud.

There are different types of snow avalanches (Table 5.1), and in particular two types of release: loose snow avalanches and slab avalanches. Loose snow avalanches start from a point, in a relatively cohesionless surface layer of either dry or wet snow. Initial failure is analogous to the rotational slip of cohesionless sands or soil, but occurs within a small volume (<1 m3) in comparison to much larger initiation volumes in soil slides.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Geomorphological Hazards and Disaster Prevention
  • Online ISBN: 9780511807527
  • Book DOI: https://doi.org/10.1017/CBO9780511807527
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
References
Ammann, W. (2001). Integrales Risikomanagement: der gemeinsame Weg in die Zukunft. Bündnerwald, 5, 14–17.
Arnalds, Th., Jónasson, K. and Sigurðsson, S. Þ. (2004). Avalanche hazard zoning in Iceland based on individual risk. Annals of Glaciology, 38, 285−290.
,AS/NZS 4360, (2004). Australian/New Zealand Standard. Risk Management. Standards Australia.
,BABS (2003). KATARISK. Katastrophen und Notlagen in der Schweiz: Eine Risikobeurteilung aus der Sicht des Bevölkerungsschutzes. Bern: Bundesamt für Bevölkerungsschutz.
Bader, S. and Kunz, P. (eds.) (1998). Klimarisiken: Herausforderungen für die Schweiz. Zürich: vdf Hochschulverlag.
,BAFU (2008). EconoMe: Wirtschaftlichkeit von Schutzmassnahmen gegen Naturgefahren. www.econome.admin.ch, (accessed 16 December 2008).
Barbolini, M., Natale, L. and Savi, F. (2002). Effects on release conditions uncertainty on avalanche hazard mapping. Natural Hazards, 25, 225–244.
Barbolini, M., Cappabianca, F. and Sailer, R. (2004a). Empirical estimate of vulnerability relations for use in snow avalanche risk assessment. In Brebbia, C., (ed.), Risk Analysis IV. Southampton: WIT, pp. 533–542.
Barbolini, M., Cappabianca, F. and Savi, F. (2004b). Risk assessment in avalanche-prone areas. Annals of Glaciology, 38, 115–122.
Bartelt, P. and Stöckli, V. (2001). The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow. Annals of Glaciology, 32, 209–216.
Bartelt, P., Salm, B. and Gruber, U. (1999). Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. Journal of Glaciology, 45(150), 242–254.
Bartelt, P., Buser, O. and Platzer, K. (2006). Fluctuation-dissipation relations for granular snow avalanches. Journal of Glaciology, 52 (179), 631–643.
Bätzing, W. (1993). Der sozio-ökonomische Strukturwandel des Alpenraums im 20. Jahrhundert. Bern: Geographica Bernensia, P26.
Becht, M. (1995). Slope erosion processes in the Alps. In Slaymaker, O. (ed.), Steepland Geomorphology. New York: Wiley, pp. 45–61.
Bell, R. and Glade, T. (2004). Quantitative risk analysis for landslides: examples from Bíldudalur, NW Iceland. Natural Hazards and Earth System Sciences, 4, 117–131.
Bell, R., Glade, T. and Danscheid, M. (2006). Challenges in defining acceptable risk levels.- In Ammann, W., Dannenmann, S. and Vulliet, L. (eds.), Coping with Risks Due to Natural Hazards in the 21st Century: “RISK 21”. 28 November – 3 December 2004, Monte Vérita (CH), Balkema: pp. 1–10.
,BEV (2004). Regionalinformation der Grundstücksdatenbank des Bundesamtes für Eich- und Vermessungswesen. www.bev.at (accessed 15 January 2006).
Birkmann, J. (ed.) (2006). Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies. New York: United Nations University Press.
Borter, P. (1999). Risikoanalysen bei gravitativen Naturgefahren: Methode. Umwelt-Materialien 107/I, Bundesamt für Umwelt, Wald und Landschaft, BUWAL, Bern.
Borter, P. and Bart, R. (1999). Risikoanalysen bei gravitativen Naturgefahren: Fallbeispiele und Daten. Umwelt-Materialien 107/II, Bundesamt für Umwelt, Wald und Landschaft, BUWAL, Bern.
Bründl, M., Schneebeli, M. and Flühler, H. (1999). Routing of canopy drip in the snowpack below a spruce crown. Journal of Hydrological Processes, 13, 49–58.
Bründl, M., Krummenacher, B. and Merz, H. M. (2009). Decision making tools for natural hazard risk management: Examples from Switzerland. In Martorell, S., Soares, C. G. and Barnett, J. (eds.), Safety, Reliability and Risk Analysis: Theory, Methods and Applications. Leiden: CRC Press/Balkema, pp. 2773–2779.
Buser, O. and Bartelt, P. (2009). The production and decay of random energy in granular snow avalanches. Journal of Glaciology, 55, 3–12.
Cappabianca, F. (2008). Empirical vulnerability function for use in snow avalanche risk assessment. In Naaim, M. (ed.), Vulnerability to Rapid Mass Movements, IRASMOS Report D4, Grenoble, France. http://irasmos.slf.ch/pdf/WP4_D40_20080710.pdf (accessed 22 October 2009).
Cappabianca, F., Barbolini, M. and Natale, L. (2008). Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Regions Science and Technology, 54, 193–205.
Christen, M., Bartelt, P. and Gruber, U. (2007). Modelling avalanches. GEOconnexion International, 6(4), 38–39.
Crozier, M. and Glade, T. (2005). Landslide hazard and risk: issues, concepts and approach. In Glade, T., Anderson, T. and Crozier, M. (eds.), Landslide Hazard and Risk. Chichester: John Wiley & Sons, pp. 1–40.
Cutter, S. (1996). Vulnerability to environmental hazards. Progress in Human Geography 20, 529–539.
Cutter, S. (2003). The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 93, 1–12.
Decaulne, A. and Saemundsson, Th. (2006). Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology, 80, 80–93.
Delparte, D., Jamieson, B. and Waters, N. (2008). Statistical runout modeling of snow avalanches using GIS in Glacier National Park, Canada. Cold Regions Science and Technology, 54(3), 183–192.
Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272.
Fell, R. and Hartford, D. (1997). Landslide risk management. In Cruden, D. and Fell, R. (eds.), Landslide Risk Assessment. Proceedings of the International Workshop on Landslide Risk Assessment Honolulu, Hawaii, USA, 19–21 February 1997. Balkema: Rotterdam, pp. 51–109.
Fuchs, S. and Bründl, M. (2005). Damage potential and losses resulting from snow avalanches in settlements in the Canton of Grisons, Switzerland. Natural Hazards, 34, 53–69.
Fuchs, S. and Keiler, M. (2006). Natural hazard risk depending on the variability of damage potential. In Popov, V. and Brebbia, C. (eds.), Risk Analysis V: Simulation and Hazard Mitigation, Wessex: WIT Press, pp. 13–22.
Fuchs, S., Keiler, M. and Zischg, A. (2001). Risikoanalyse Suldental. Innsbrucker Geographische Studien, Innsbruck.
Fuchs, S., Bründl, M. and Stötter, J. (2004). Development of avalanche risk between 1950 and 2000 in the municipality of Davos, Switzerland. Natural Hazards and Earth System Sciences, 4(2), 263–275.
Fuchs, S., Heiss, K. and Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 7, 495–506.
Gächter, M. and Bart, R. (2002). Risikoanalyse und Kostenwirksamkeit bei der Massnahmenplanung: Beispiel Diesbach. Schweizerische Zeitschrift für Forstwesen, 153, 268–273.
Glade, T. and Elverfeldt, K. (2005). MultiRISK: an innovative concept to model natural risks. In Oldrich, H., Fell, R., Coulture, R. and Eberhardt, E. (eds.), International Conference on Landslide Risk Management, Vancouver (CND), 31 May –3 June 2005, Rotterdam: Balkema, pp. 551–556.
Haimes, Y. Y. (2004). Risk Modeling, Assessment, and Management, 2nd edition. Hoboken, New Jersey: Wiley.
Hatfield, A. and Hipel, K. (2002). Risk and systems theory. Risk Analysis, 22(6), 1043–1057.
Holub, M. and Fuchs, S. (2008). Benefits of local structural protection to mitigate torrent-related hazards. WIT Transactions on Information and Communication Technologies, 39, 401–411.
Hufschmidt, G., Crozier, M. and Glade, T. (2005). Evolution of natural risk: research framework and perspectives. Natural Hazards and Earth System Sciences, 5, 375–387.
,International Organization for Standardization, ISO (2008). Draft International Standard ISO 31000. Risk Management: Principles and Guidelines on Implementation. http://www.broadleaf.com.au/pdfs/iso_31000/iso_iec_rm_princips.pdf (accessed 15 December 2008).
Jaecklin, A. (2007). Voll integriertes Risikomanagement. MQ Management und Qualität (11), 21–23. http://www.saq.ch/fileadmin/user_upload/mq/downloads/mq_2007_11_jaecklin.pdf (accessed 15 December 2008).
Jamieson, J. B. and Stethem, C. (2002). Snow avalanche hazards and management in Canada: challenges and progress. Natural Hazards, 26(1), 35–53.
Jónasson, K., Sigurðsson, S. and Arnalds, Þ. (1999). Estimation of Avalanche Risk. Icelandic Meteorological Office, Reykjavík, Iceland, VÍ-R99001-ÚR01.
Kaplan, S. and Garrick, B. (1981). On the quantitative definition of risk. Risk Analysis, 1(1), 11–27.
Keiler, M. (2004). Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Natural Hazards and Earth System Sciences, 4, 249–256.
Keiler, M., Zischg, A., Fuchs, S., Hama, M. and Stötter, J. (2005). Avalanche related damage potential: changes of persons and mobile values since the mid-twentieth century, case study Galtür. Natural Hazards and Earth System Sciences, 5, 49–58.
Keiler, M., Sailer, R., Jörg, P.et al. (2006). Avalanche risk assessment: a multi-temporal approach, results from Galtür, Austria. Natural Hazards and Earth System Sciences, 6, S. 637–651.
Kern, M., Bartelt, P.Sovilla, B. and Buser, O. (2009). Measured shear rates in large dry and wet snow avalanches. Journal of Glaciology, 55, 327–338.
Keylock, C. and Barbolini, M. (2001). Snow avalanche impact pressure: vulnerability relations for use in risk assessment. Canadian Geotechnical Journal, 38, 227–238.
Keylock, C., McClung, D. and Magnússon, M. (1999). Avalanche risk mapping by simulation. Journal of Glaciology, 45, 303–314.
Klinke, A. and Renn, O. (2002). A new approach to risk evaluation and management: risk-based, precaution-based, and discourse-based strategies. Risk Analysis, 22(6), 1071–1094.
Kraus, D., Hübl, J. and Rickenmann, D. (2006). Building vulnerability related to floods and debris flows: case studies. In Ammann, W., Dannenmann, S. and Vulliet, L. (eds.), Coping with Risks Due to Natural Hazards in the 21st Century. London: Taylor & Francis, pp. 181–190.
Kristjansdottir, G. B. (1997). Jardfraedileg ummerki eftir snjoflod i botni Dyrafjardar, BS Thesis, Department of Geology and Geography, University of Iceland (in Icelandic).
Kulakowski, D., Rixen, C. and Bebi, P. (2006). Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. Forest Ecology and Management, 223(1–3), 66–74, doi: 10.1016/j.foreco.2005.10.058.
Laternser, M. and Schneebeli, M. (2002). Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Natural Hazards, 27(3), 201–230, doi: 10.1023/A:1020327312719.
Laternser, M. and Schneebeli, M. (2003). Long-term snow climate trends of the Swiss Alps (1931–99). International Journal of Climatology, 23(7), 733–750, doi: 10.1002/joc.912.
Lehning, M., Löwe, H., Ryser, M. and Raderschall, N. (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resources Research, 44, doi:10.1029/2007WR006545.
McClung, D. and Schaerer, P. (2006). The Avalanche Handbook, 3rd edition, Seattle, WA: The Mountaineers Books.
Prokop, A. (2008). Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements, Cold Regions Science and Technology, 54(3), 155–163.
Rheinberger, Ch., Bründl, M. and Rhyner, J. (2009). Dealing with the White Death: avalanche risk management for traffic routes. Risk Analysis, 29(1), 76–94.
Rixen, C., Haag, S., Kulakowski, D. and Bebi, P. (2007). Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt. Journal of Vegetation Science, 18, 735–742.
Sailer, R., Rammer, L. and Sampl, P. (2002). Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar. Natural Hazards and Earth System Sciences, 2, 211–216.
Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18, 221–226.
Sampl, P. and Zwinger, T. (2004). Avalanche simulation with SAMOS. Annals of Glaciology, 38, 393–396.
Schaffhauser, A., Adams, M., Fromm, R., et al. (2008). Remote sensing based retrieval of snow cover properties. Cold Regions Science and Technology, 54(3), 164–175.
Schaub, Y. (2008). Risikomanagement von Naturgefahren: Sensitivität der Risikoberechnung in Bezug auf die Eingabefaktoren und deren Bedeutung für die Massnahmenbewertung. M.Sc. Thesis, Department of Geography, University of Zurich, Zurich.
Schneebeli, M., Laternser, M., Föhn, P. and Ammann, W. (1998). Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen. Zürich: vdf Hochschulverlag.
Schweizer, J. (2008). On the predictability of snow avalanches. In Campbell, C., Conger, S. and Haegeli, P. (eds.), Proceedings ISSW 2008, International Snow Science Workshop, Whistler, Canada, 21–27 September 2008, pp. 688–692.
Schweizer, J., Jamieson, J. B. and Schneebeli, M. (2003). Snow avalanche formation. Review of Geophysics, 41(4), 1016.
,SLF (ed.) (2000). Der Lawinenwinter 1999. Davos: Eidgenössisches Institut für Schnee- und Lawinenforschung.
Sovilla, B., Burlando, P. and Bartelt, P. (2006). Field experiments and numerical modelling of mass entrainment in snow avalanches. Journal of Geophysical Research, 111(F3), F03007, doi: 10.1029/2005JF000391.
Sovilla, B., Schaer, M., Kern, M. and Bartelt, P. (2007). Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. Journal of Geophysical Research, doi:10.1029/2006JF000688.
Sovilla, B., Schaer, M. and Rammer, L. (2008). Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne test site. Cold Regions Science and Technology, 51(2–3), 122–137.
Stethem, C., Jamieson, B., Schaerer, P.et al. (2003). Snow avalanche hazard in Canada: a review. Natural Hazards, 28, 487–515.
,UNESCO (1981). Avalanche Atlas: Illustrated International Avalanche Classification. Paris, France: International Association of Hydrological Sciences, International Commission on Snow and Ice: Natural Hazards Series, Vol. 2.
Uzielli, M., Farrokh, N., Lacasse, S. and Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3–4), 251–256.
Varnes, D. (1984). Landslide Hazard Zonation: A Review of Principles and Practice. Paris: UNESCO.
Ward, R. G. V. (1985). Geomorphological evidence of avalanche activity in Scotland. Geografiska Annaler, 67A, 247–256.
Weichselgartner, J. (2001). Disaster mitigation: the concept of vulnerability revisited. Disaster Prevention and Management, 10(2): 85–94.
White, G., Burton, R. and Kates, I. (2001). Knowing better and loosing even more: the use of knowledge in hazards management. Environmental Hazards, 3, 81–92.
Wilhelm, C. (1997). Wirtschaftlichkeit im Lawinenschutz. Davos: Eidgenössisches Institut für Schnee- und Lawinenforschung, Mitteilung 54.