Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T16:09:58.325Z Has data issue: false hasContentIssue false

27 - Methodology

from General Methods

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, R. P. (1995). Statistics as Principled Argument. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Abelson, R. P. & Prentice, D. A. (1997). Contrast tests of interaction hypotheses. Psychological Methods, 2: 315328.CrossRefGoogle Scholar
Aiken, L. S. & West, S. G. (1991). Multiple Regression: Testing and Interpreting Interactions. Newbury Park, CA: Sage.Google Scholar
Algina, J. & Keselman, H. J. (1997). Detecting repeated measures effects with univariate and multivariate statistics. Psychological Methods, 2: 208218.Google Scholar
Altmann, E. M. (2004). Advance preparation in task switching: what work is being done? Psychological Science, 15: 616622.Google Scholar
Amodio, D. M. & Bartholow, B. D. (2011). Event-related-potential methods in social cognition. In Klauer, C., Voss, A., & Stahl, C. (eds.), Cognitive Methods in Social Psychology (pp. 303339). New York: Guilford Press.Google Scholar
Arruda, J. E., McGee, H. A., Zhang, H., & Stanny, C. J. (2011). The effects of EEG data transformations on the solution accuracy of principal component analysis. Psychophysiology, 48: 370376.Google Scholar
Baron, R. M. & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51: 11731182.Google Scholar
Berntson, G. G., Bigger, J. Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … & van der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. T. (1994a). Autonomic space and physiological response. Psychophysiology, 31, 4461.CrossRefGoogle Scholar
Berntson, G. G., Quigley, K. S., Lang, J. F., & Boysen, S. T. (1990). An approach to artifact identification: application to heart period data. Psychophysiology, 27: 586598.Google Scholar
Berntson, G. G., Uchino, B. N., & Cacioppo, J. T. (1994b). Origins of baseline variance and the law of initial value. Psychophysiology, 31: 204210.Google Scholar
Blumenthal, T. D., Cuthbert, B. N., Gilion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report. Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42: 115.Google Scholar
Borenstein, M., Cohen, J., & Rothstein, H. (1997). Power and Precision. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google Scholar
Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems: I. Effects of inequality of variance in the one-way classification. Annals of Mathematical Statistics, 25: 290302.Google Scholar
Box, G. E. P. & Jenkins, G. M. (1970). Time Series Analysis. San Francisco, CA: Holden Day.Google Scholar
Bryk, A. S. & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101: 147158.Google Scholar
Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: a Monte Carlo investigation. Psychological Bulletin, 113: 566579.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.Google Scholar
Cacioppo, J. T., Tassinary, L. G., & Fridlund, A. J. (1990). The skeletomotor system. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 325384). Cambridge University Press.Google Scholar
Cary, N. C. (1989). SAS/IML Software: Usage and Reference, Version 6. SAS Institute.Google Scholar
Cary, N. C. (1996). SAS/STAT Software: Changes and Enhancements through Release 6.11. SAS Institute.Google Scholar
Casella, G. (1985). An introduction to empirical Bayesian data analysis. American Statistician, 39: 8387.Google Scholar
Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: between-subject and within-subject design. Journal of Economic Behavior & Organization, 81: 18.Google Scholar
Cheung, M. N. (1981). Detection of and recovery from errors in cardiac interbeat intervals. Psychophysiology, 18: 341346.Google Scholar
Chi, E. M. & Reinsel, G. C. (1989). Models of longitudinal data with random effects and AR-1 errors. Journal of the American Statistical Association, 84: 452459.Google Scholar
Chow, S. L. (1996). Statistical Significance: Rationale, Validity, and Utility. Thousand Oaks, CA: Sage.Google Scholar
Cleveland, W. S. (1985). The Elements of Graphing Data. Monterey, CA: Wadsworth.Google Scholar
Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences, rev. edn. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112: 155159.Google Scholar
Cohen, J. (1994). The earth is round (p <.05). American Psychologist, 49: 9971003.Google Scholar
Cohen, J. & Cohen, P. (1975). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cohen, J. & Cohen, P. (1983). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd edn. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cole, J. W. L. & Grizzle, J. E. (1966). Application of multivariate analysis of variance to repeated measures experiments. Biometrics, 22: 810828.Google Scholar
Coles, M. G. H. (1989). Modern mind–brain reading: psychophysiology, physiology, and cognition. Psychophysiology, 26: 251269.Google Scholar
Coles, M. G. H., Gratton, G., & Donchin, E. (1988). Detecting early communication: using measures of movement-related potentials to illuminate human information processing. Biological Psychology, 26: 6989.Google Scholar
Cook, E. W. & Miller, G. A. (1992). Digital filtering: background and tutorial for psychophysiologists. Psychophysiology, 29: 350367.Google Scholar
Cook, R. D. & Weisberg, S. (1994). An Introduction to Regression Graphics. New York: John Wiley.Google Scholar
Cooper, H., Camic, P. M., Long, D. L., Panter, A. T., Rindskopf, D., & Sher, K. J. (2012). APA Handbook of Research Methods in Psychology, vol 1: Foundations, Planning, Measures, and Psychometrics. Washington, DC: American Psychological Association.Google Scholar
Cumming, G. (2014). The new statistics: why and how. Psychological Science, 25: 729.Google Scholar
Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61: 532574.CrossRefGoogle Scholar
Curtin, J. J., Lozano, D. L., & Allen, J. J. B (2007). The psychophysiology laboratory. In Coan, J. A. & Allen, J. J. B. (eds.), The Handbook of Emotion Elicitation and Assessment (pp. 398425). Oxford University Press.Google Scholar
D’Amico, E. J., Neilands, T. B., & Zambarano, R. (2001). Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure. Behavior Research Methods, Instruments, & Computers, 33: 479484.Google Scholar
Darlington, R. B. (1990). Regression and Linear Models. New York: McGraw-Hill.Google Scholar
Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In Davidson, R. J. & Hugdahl, K. (eds.), Brain Asymmetry (pp. 361388). Cambridge, MA: MIT Press.Google Scholar
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Naatanen, R., … & Van Petten, C. (2009). Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120: 18831908.Google Scholar
Efron, B. & Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253: 390395.Google Scholar
Elmes, D. G., Kantowitz, B. H., & Roedinger, H. L. III (2012). Research Methods, 9th edn. Belmont, CA: Wadsworth.Google Scholar
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39: 175191.Google Scholar
Fluchêre, F., Deveaux, M., Burle, B., Vidal, F., van den Wildenberg, W. P., Witjas, T., … & Hasbroucq, T. (2015). Dopa therapy and action impulsivity: subthreshold error activation and suppression in Parkinson’s disease. Psychopharmacology, 232: 17351746.CrossRefGoogle ScholarPubMed
Frick, R. W. (1996). The appropriate use of null hypothesis testing. Psychological Methods, 1: 379390.Google Scholar
Fridlund, A. J. & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23: 567589.Google Scholar
Gianaros, P. J., Quigley, K. S., Muth, E. R., Levine, M. E., Vasko, R. C. J., & Stern, R. M. (2003). Relationship between temporal changes in cardiac parasympathetic activity and motion sickness severity. Psychophysiology, 40: 3944.Google Scholar
Gibbons, R. D., Hedeker, D., Elkin, I., Waternaux, C., Kraemer, H. C., Greenhouse, J. B., … & Watkins, J. T. (1993). Some conceptual and statistical issues in analysis of longitudinal psychiatric data: application to the NIMH Treatment of Depression Collaborative Research Program Dataset. Archives of General Psychiatry, 50: 739750.CrossRefGoogle Scholar
Gibbons, R. D., Hedeker, D., Waternaux, C., & Davis, J. M. (1988). Random regression models: a comprehensive approach to the analysis of longitudinal psychiatric date. Psychopharmacological Bulletin, 24: 438443.Google Scholar
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography & Clinical Neurophysiology, 55: 468484.CrossRefGoogle ScholarPubMed
Greenen, R. & van de Vijver, F. J. R. (1993). A simple test of the law of initial values. Psychophysiology, 30: 525530.Google Scholar
Greenhouse, J. B. & Junker, B.W. (1992). Exploratory statistical methods, with applications to psychiatric research. Psychoneuroendocrinology, 17: 423441.Google Scholar
Greenhouse, S. W. & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24: 95112.Google Scholar
Greenwald, A. G., Gonzalez, R., Harris, R. H., & Guthrie, D. (1996). Effect sizes and p-values: what should be reported and what should be replicated? Psychophysiology, 33: 175183.Google Scholar
Gueorguieva, R. & Krystal, J. H. (2004). Move over anova: progress in analyzing repeated-measures data andits reflection in papers published in the archives of general psychiatry. Archives of General Psychiatry, 61: 310317.Google Scholar
Guilford, J. P. (1954). Psychometric Methods. New York: McGraw-Hill.Google Scholar
Harris, R. J. (1991). Significance tests are not enough: the role of effect size estimation in theory corroboration. Theory and Psychology, 1: 375382.Google Scholar
Hayes, A. F. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York: Guilford Press.Google Scholar
Hayes, A. F. & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41: 924936.CrossRefGoogle ScholarPubMed
Hays, W. L. (1994). Statistics. Orlando, FL: Rinehart and Winston.Google Scholar
Hedeker, D. & Gibbons, R. D. (2006). Longitudinal Data Analysis. Hoboken, NJ: John Wiley.Google Scholar
Hintze, J. (2004). NCSS PASS. Retrieved from www.ncss.com/pass.htmlGoogle Scholar
Hoffman, L. (2015). Longitudinal Analysis: Modeling Within-Person Fluctuation and Change. New York: Routledge.Google Scholar
Howell, G. T. & Lacroix, G. L. (2012). Decomposing interactions using GLM in combination with the COMPARE, LMATRIX and MMATRIX subcommands in SPSS. Tutorials in Quantitative Methods for Psychology, 8: 122.Google Scholar
Huster, R. J., Debener, S., Eichele, T., & Herrmann, C. S. (2012). Methods for simultaneous EEG-fMRI: an introductory review. Journal of Neuroscience, 32: 60536060.Google Scholar
Huynh, H. & Feldt, L. S. (1970). Conditions under which mean square ratios in repeated measurement designs have exact F distributions. Journal of the American Statistical Association, 65: 15821589.Google Scholar
Huynh, H. & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1: 6982.Google Scholar
Jaccard, J., Becker, M. A., & Wood, G. (1984). Pairwise multiple comparison procedures: a review. Psychological Bulletin, 96: 589596.Google Scholar
Jackson, A. F. & Bolger, D. J. (2014). The neurophysiological basis of EEG and EEG measurement: a review for the rest of us. Psychophysiology, 51: 10611071.Google Scholar
Jacob, R. G., Thayer, J. F., Manuck, S. B., Muldoon, M. F., Tamres, L. K., Williams, D. M., … & Gatsonis, C. (1999). Ambulatory blood pressure responses and the circumplex model of mood: a 4-day study. Psychosomatic Medicine, 61: 319333.Google Scholar
Jacoby, W. G. (1997). Statistical Graphics for Univariate and Bivariate Data: Quantitative Applications in Social Sciences. Thousand Oaks, CA: Sage.Google Scholar
James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38: 324329.Google Scholar
James, G. S. (1954). Tests of linear hypotheses in univariate and multivariate analysis when the ratios of the population variances are unknown. Biometrika, 41: 1943.Google Scholar
Janicki-Deverts, D. & Kamarck, T. W. (2008). Ambulatory blood pressure monitoring. In Luecken, L. J. & Gallo, L. C. (eds.), Handbook of Physiological Research Methods in Health Psychology (pp. 159182). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Jennings, J. R. (1986). Bodily changes during attending. In Coles, M. G. H., Donchin, E., & Porges, S. W. (eds.), Psychophysiology: Systems, Processes and Applications (pp. 268289). New York: Guilford Press.Google Scholar
Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S. W., & Turpin, G. (1981). Publication guidelines for heart rate studies in men. Psychophysiology, 18: 226231.CrossRefGoogle Scholar
Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M., & Johnson, P. (1992). Alternate cardiovascular baseline assessment techniques: vanilla or resting baseline? Psychophysiology, 29: 742750.CrossRefGoogle ScholarPubMed
Jennings, J. R. & McKnight, J. D. (1994). Inferring vagal tone from heart rate variability. Psychosomatic Medicine, 56: 194196.Google Scholar
Jennings, J. R. & Wood, C. C. (1976). The epsilon-adjusted procedure for repeated measures analyses of variance. Psychophysiology, 13: 277278.Google Scholar
Johnson, P. O. & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1: 5793.Google Scholar
Judd, C. M., McClelland, G. H., & Smith, E. R. (1996). Testing treatment by covariate interactions when treatment varies within participants. Psychological Methods, 1: 366378.Google Scholar
Kamarck, T. W., Jennings, J. R., Debski, T. W., Glickman-Weiss, E., Eddy, M. J., & Manuck, S. B. (1992). Reliable measures of behaviorally-evoked cardiovascular reactivity from a PC-based test battery: results from student and community samples. Psychophysiology, 29: 1728.Google Scholar
Kamarck, T. W., Schwartz, J. E., Janicki, D. L., Shiffman, S., & Raynor, D. A. (2003). Correspondence between laboratory and ambulatory measures of cardiovascular reactivity: a multilevel modeling approach. Psychophysiology, 40: 675683.Google Scholar
Kamarck, T. W., Schwartz, J. E., Shiffman, S., Muldoon, M. F., Sutton-Tyrrell, K., & Janicki, D. L. (2005). Psychosocial stress and cardiovascular risk: what is the role of daily experience? Journal of Personality, 73: 17491774.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Shiffman, S., Sutton-Tyrrell, K., Muldoon, M. F., & Tepper, P. (2012). Daily psychological demands are associated with 6-year progression of carotid artery atherosclerosis: the Pittsburgh Healthy Heart Project. Psychosomatic Medicine, 74: 432439.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Shiffman, S., & Wethington, E. (2011). Measuring psychosocial stress using ecological momentary assessment methods. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 597617). New York: Springer.Google Scholar
Kamen, R. (1987). Introduction to Signals and Systems. New York: Macmillan.Google Scholar
Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., … & Yee, C. M. (2014). Committee report. Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51: 121.Google Scholar
Kenny, D. A. (1979). Correlation and Causality. New York: John Wiley.Google Scholar
Keppel, G. (1991). Design and Analysis: A Researcher’s Handbook, 3rd edn. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Keppel, G. & Wickens, T. D. (2004). Design and Analysis: A Researcher’s Handbook, 4th edn. Upper Saddle River, NJ: Pearson/Prentice-Hall.Google Scholar
Kerlinger, F. N. L. & Lee, H. B. (2000). Foundations of Behavioral Research, 4th edn. New York: Harcourt College.Google Scholar
Keselman, H. J., Carriere, K. C., & Lix, L. M. (1993). Testing repeated measures hypotheses when covariance matrices are heterogeneous. Journal of Educational Statistics, 18: 305319.Google Scholar
Keselman, H. J., Keselman, J. C., & Lix, L. M. (1995). The analysis of repeated measurements: univariate tests, multivariate tests, or both? British Journal of Mathematical and Statistical Psychology, 48: 319338.CrossRefGoogle Scholar
Keselman, H. J., Kowalchuk, R. K., Algina, J., Lix, L. M., & Wilcox, R. R. (2000). Testing treatment effects in repeated measures designs: Trimmed means and bootstrapping. British Journal of Mathematical and Statistical Psychology, 53: 175191.Google Scholar
Keselman, H. J., Rogan, J. C., Mendoza, J. L., & Breen, L. J. (1980). Testing the validity conditions of repeated measures F tests. Psychological Bulletin, 87: 479481.Google Scholar
Keselman, J. C. & Keselman, H. J. (1990). Analyzing unbalanced repeated measures designs. British Journal of Mathematical and Statistical Psychology, 43: 265282.Google Scholar
Khatree, R. & Naik, D. N. (1995). Applied Multivariate Statistics with SAS Software. Cary, NC: SAS Institute.Google Scholar
Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Sciences, 3rd edn. Monterey, CA: Brooks/Cole.Google Scholar
Kline, R. B. (2004). Beyond Significance Testing: Reforming Data Analysis Methods in Behavioral Research. Washington, DC: American Psychological Association.Google Scholar
Krantz, D. S. & Manuck, S. B. (1984). Acute psychophysiologic reactivity and risk of cardiovascular disease: a review and methodologic critique. Psychological Bulletin, 96: 435464.Google Scholar
Kristjansson, S. D., Kircher, J. C., & Webb, A. K. (2007). Multilevel models for repeated measures research designs in psychophysiology: an introduction to growth curve modeling. Psychophysiology, 44: 728736.Google Scholar
Laird, N. M. & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38: 963974.CrossRefGoogle ScholarPubMed
Lavori, P. (1990). ANOVA, MANOVA, my black hen: comments on repeated measures. Archives of General Psychiatry, 47: 775778.Google Scholar
Law, L. N., Levey, A. B., & Martin, I. (1980). Response detection and measurement. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 629663). Chichester: John Wiley.Google Scholar
Levey, A. B. (1980). Measurement units in psychophysiology. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 597628). Chichester: John Wiley.Google Scholar
Levey, M. N. (1977). Parasympathetic control of the heart. In Randall, W. C. (ed.), Neural Regulation of the Heart (pp. 95129). Oxford University Press.Google Scholar
Levey, M. N. & Martin, P. (1984). Parasympathetic control of the heart. In Randall, W. C. (ed.), Nervous Control of Cardiovascular Function (pp. 6894). Oxford University Press.Google Scholar
Lippold, O. C. J. (1967). Electromyography. In Venables, P. H. & Martin, I. (eds.), A Manual of Psychophysiological Methods (pp. 246297). New York: John Wiley.Google Scholar
Little, T. D. (2013). Longitudinal Structural Equation Modeling. New York: Guilford Press.Google Scholar
Lix, L. M. &Keselman, H. H. (1995). Approximate degrees of freedom tests: a unified perspective on testing for mean equality. Psychological Bulletin, 117: 547560.Google Scholar
Llabre, M. M., Spitzer, S. B., Saab, P. G., Ironson, G. H., & Schneiderman, N. (1991). The replicability and specificity of delta versus residualized change as measures of cardiovascular reactivity to behavioral challenges. Psychophysiology, 28: 701711.Google Scholar
Loewenfeld, I. E. (1993). The Pupil: Anatomy, Physiology, and Clinical Applications. Ames, IA: Iowa State University Press.Google Scholar
Loftus, G. R. M. (1994). Why psychology will never be a real science until we change the way that we analyze data. Paper presented at the 102nd Annual Convention of the American Psychological Association, Los Angeles, California.Google Scholar
Loftus, G. R. M. & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin and Review, 1: 476490.Google Scholar
Lykken, D. T. (1972). Range correction applied to heart rate and GSR data. Psychophysiology, 9: 373379.CrossRefGoogle ScholarPubMed
Maxwell, S. E. & Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance. Psychological Bulletin, 113: 181200.Google Scholar
Maxwell, S. E. & Delaney, H. D. (2004). Designing Experiments and Analyzing Data: A Model Comparison Approach, 2nd edn. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Meyers, D. L. (1991). Misinterpretation of interaction effects: a reply to Rosnow and Rosenthal. Psychological Bulletin, 110: 571573.Google Scholar
Michell, J. (1986). Measurement scales and statistics: a clash of paradigms. Psychological Bulletin, 100: 398407.Google Scholar
Miller, G. A. & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110: 4048.Google Scholar
Moriarty, J., Hogan, M., & Stewart, I. (2011). Starting slow: the effects of response-switching frequency on patterns of cardiovascular reactivity. Psychology, Health & Medicine, 16: 1218.Google Scholar
Mortensen, J. A., Lehn, H., Evensmoen, H. R., & Haberg, A. K. (2015). Evidence for an antagonistic interaction between reward and punishment sensitivity on striatal activity: a verification of the joint subsystems hypothesis. Personality and Individual Differences, 74: 214219.Google Scholar
Muller, K. E. & Barton, C. N. (1989). Approximate power for repeated measures ANOVA lacking sphericity. Journal of the American Statistical Association, 84: 549555.Google Scholar
Muller, K. E. & Barton, C. N. (1991). Correction to “Approximate power for repeated measures ANOVA lacking sphericity.” Journal of the American Statistical Association, 86: 255256.Google Scholar
Muller, K. E., LaVange, L. M., Ramey, S. L., & Ramey, C. T. (1992). Power calculations for general linear multivariate models including repeated measures applications. Journal of the American Statistical Association, 87: 12091226.Google Scholar
Myers, N. D., Brincks, A. M., Ames, A. J., Prado, G. J., Penedo, F. J., & Benedict, C. (2012). Multilevel modeling in psychosomatic medicine research. Psychosomatic Medicine, 74: 925936.Google Scholar
Myrtek, M. & Foerster, F. (1986). The law of initial value: a rare exception. Biological Psychology, 22: 227237.Google Scholar
Nicol, A. A. M. & Pexman, P. M. (2010). Displaying Your Findings: A Practical Guide for Creating Figures, Posters, and Presentations, 6th edn. Washington, DC: American Psychological Association.Google Scholar
Nussbaum, E. M. (2015). Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique. New York: Routledge.Google Scholar
O’Brien, R. G. & Muller, K. E. (1993). Unified power analysis for t-tests through multivariate hypotheses. In Edwards, L. K. (ed.), Applied Analysis of Variance in the Behavioral Sciences (pp. 297344). New York: Marcel Dekker.Google Scholar
Osterhout, L., Bersick, M., & McKinnon, R. (1997). Brain potentials elicited by words: word length and frequency predict the latency of an early negativity. Biological Psychology, 46: 143168.Google Scholar
Overall, J. E. & Tonidandel, S. (2010). The case for use of simple difference scores to test the significance of differences in mean rates of change in controlled repeated measurements designs. Multivariate Behavioral Research, 45: 806827.Google Scholar
Petrinovich, L. & Widaman, K. F. (1984). An evaluation of statistical strategies to analyze repeated-measures data. In Peeke, H. V. S. & Petrinovich, L. (eds.), Habituation, Sensitivation, and Behavior (pp. 105201). Orlando, FL: Academic Press.Google Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr., … & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37: 127152.CrossRefGoogle ScholarPubMed
Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30: 547548.Google Scholar
Porges, S. W. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage – a polyvagal theory. Psychophysiology, 32: 301318.Google Scholar
Porges, S. W. & Bohrer, R. E. (1990). The analysis of periodic processes in psychophysiological research. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology (pp. 708753). Cambridge University Press.Google Scholar
Poulton, E. C. (1973). Unwanted range effects from using within-subject experimental designs. Psychological Bulletin, 80: 113121.Google Scholar
Poulton, E. C. (1982). Influential companions: effects of one strategy on another in the within-subjects designs of cognitive psychology. Psychological Bulletin, 91: 673690.Google Scholar
Poulton, E. C. & Edwards, R. S. (1979). Asymmetric transfer in within-participants experiments on stress interaction. Ergonomics, 22: 945961.Google Scholar
Poulton, E. C. & Freeman, P. R. (1966). Unwanted asymmetrical transfer effects with balanced experimental designs. Psychological Bulletin, 66: 18.Google Scholar
Preacher, K. J. & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36: 717731.Google Scholar
Quigley, K. S. & Berntson, G. G. (1990). Autonomic interactions and chronotropic control of the heart: heart period versus heart rate. Psychophysiology, 33: 605611.Google Scholar
Ritz, T., Dahme, B., Dubois, A. B., Folgering, H., Fritz, G. K., Harver, A., … & Van de Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39: 546567.Google Scholar
Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement of change. Psychological Bulletin, 92: 726748.Google Scholar
Rosenthal, R. & Rosnow, R. L. (1985). Contrast Analysis: Focused Comparisons in the Analysis of Variance. New York: Holt, Rinehart, & Winston.Google Scholar
Rosenthal, R. & Rosnow, R. L. (1991). Essentials of Behavioral Research: Explanation and Prediction, 2nd edn. New York: McGraw-Hill.Google Scholar
Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.Google Scholar
Rosnow, R. L. & Rosenthal, R. (1989a). Definition and interpretation of interaction effects. Psychological Bulletin, 105: 143146.Google Scholar
Rosnow, R. L. & Rosenthal, R. (1989b). Statistical procedures and the justification of knowledge in psychological science. American Psychologist, 44: 12761284.Google Scholar
Rosnow, R. L. & Rosenthal, R. (1991). If you’re looking at the cell means, you’re not looking at only the interaction (unless all main effects are zero). Psychological Bulletin, 110: 574576.Google Scholar
Rosnow, R. L. & Rosenthal, R. (1995). Some things you learn aren’t so: Cohen’s paradox, Asch’s paradigm, and the interpretation of interaction. Psychological Science, 6: 39.Google Scholar
Rozeboom, W. W. (1960). The fallacy of the null hypothesis significance test. Psychological Bulletin, 57: 416428.Google Scholar
Russell, D. W. (1990). The analysis of psychophysiological data: multivariate approaches. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology (pp. 775801). Cambridge University Press.Google Scholar
Schroeder, L. D., Sjoquist, D. L., & Stephan, P. E. (1986). Understanding Regression Analysis: An Introductory Guide. Newbury Park, CA: Sage.Google Scholar
Selig, J. P. & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6: 144164.Google Scholar
Shapiro, D., Lane, J. D., Light, K. C., Myrtek, M., Suwada, Y., & Steptoe, A. (1996). Blood pressure publication guidelines. Psychophysiology, 33: 112.Google Scholar
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google Scholar
Sidani, S. & Lynn, M. R. (1993). Examining amount and pattern of change: comparing repeated measures ANOVA and individual regression analysis. Nursing Research, 42: 283286.Google Scholar
Siegal, S. (1956). Nonparametric Statistics. New York: McGraw-Hill.Google Scholar
Stearns, S. D. & David, R. A. (1993). Signal Processing Algorithms in Fortran and C. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Stemmler, G. & Fahrenberg, J. (1989). Psychophysiological assessment: conceptual, psychometric, and statistical issues. In Turpin, G. (ed.), Handbook of Clinical Psychophysiology (pp. 71104). Chichester: John Wiley.Google Scholar
Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological Recording, 2nd edn. Oxford University Press.Google Scholar
Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In Stevens, S. S. (ed.), Handbook of Experimental Psychology (pp. 149). New York: John Wiley.Google Scholar
Stiratelli, R., Laird, N. M., & Ware, J. H. (1984). Random-effects models for serial observations with binary response. Biometrics, 40: 961971.Google Scholar
Tabachnick, B. G. & Fidell, L. S. (2014). Cleaning up your act. In Tabachick, B. G. & Fidell, L. S., Using Multivariate Statistics, 6th edn. (pp. 93152). Harlow: Pearson.Google Scholar
Thede, L. (1996). Analog and Digital Filter Design Using C. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R. (1990). Envisioning Information. Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Cheshire, CT: Graphics Press.Google Scholar
Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.Google Scholar
van Boxtel, G. J. M. (1998). Computational and statistical methods for analyzing event-related potential data. Behavior Research Methods, Instruments, & Computers, 30: 87102.Google Scholar
van Boxtel, G. J. M., van den Boogaart, B., & Brunia, C. H. M. (1993). The contingent negative variation in a choice reaction time task. Journal of Psychophysiology, 7: 1123.Google Scholar
van Ravenswaaij-Arts, C. M. A., Kolle’e, L. A. A., Hopman, J. C. W., Stoelinga, G. B. A., & van Geijn, H. P. (1993). Heart rate variability. Annals of Internal Medicine, 118: 463447.Google Scholar
Wainer, H. & Thissen, D. (1981). Graphical data analysis. Annual Review of Psychology, 32: 191241.CrossRefGoogle Scholar
Wainer, H. & Thissen, D. (1993). Graphical data analysis. In Keren, G. & Lewis, C. (eds.), A Handbook for Data Analysis in the Behavioral Sciences: Statistical Issues (pp. 391457). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician, 39: 95101.Google Scholar
Wasserman, S. B. & Bockenholt, U. (1989). Bootstrapping: applications to psychophysiology. Psychophysiology, 26: 208221.Google Scholar
Weiss, S. (2014). The fault in our stats. Observer, 27: 2930.Google Scholar
Welch, B. L. (1947). The generalization of “Student’s” problem when several different population variances are unequal. Biometrika, 29: 350362.Google Scholar
Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38: 330336.Google Scholar
White, T. L. & McBurney, D. H. (2013). Research Methods, 9th edn. Belmont, CA: Wadsworth.Google Scholar
Wilder, J. (1958). Modern psychophysiology and the law of initial value. American Journal of Psychotherapy, 12: 199221.Google Scholar
Wilson, R. S. (1967). Analysis of autonomic reaction patterns. Psychophysiology, 4: 125142.Google Scholar
Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72: 20312046.Google Scholar
Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., & Bugiardini, R. (2012). Heart rate variability today. Progress in Cardiovascular Diseases, 55: 321331.Google Scholar
Zahn, T. P. & Kreusi, M. J. P. (1993). Autonomic activity in boys with disruptive behavior disorders. Psychophysiology, 30: 605614.Google Scholar
Zuckerman, M., Hodgins, H. S., Zuckerman, A., & Rosenthal, R. (1993). Contemporary issues in the analysis of data. Psychological Sciences, 4: 4953.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×