Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-04T13:26:35.950Z Has data issue: false hasContentIssue false

Section 6 - Late Complications of Hematopoietic Cell Transplantation

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 163 - 182
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Arai, S, Arora, M, Wang, T, Spellman, SR, He, W, Courie, DR, et al. Increasing incidence of chronic graft-versus-host disease in allogeneic transplantation: A report from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2015;21(2):266–74. PubMed PMID: WOS:000348632700009. English.Google Scholar
Perez-Simon, JA, Encinas, C, Silva, F, Arcos, MJ, Diez-Campelo, M, Sanchez-Guijo, FM, et al. Prognostic factors of chronic graft-versus-host disease following allogeneic peripheral blood stem cell transplantation: the national institutes health scale plus the type of onset can predict survival rates and the duration of immunosuppressive therapy. Biol Blood Marrow Transplant. 2008;14(10):1163–71. PubMed PMID: 18804047.Google Scholar
Kuzmina, Z, Eder, S, Bohm, A, Pernicka, E, Vormittag, L, Kalhs, P, et al. Significantly worse survival of patients with NIH-defined chronic graft-versus-host disease and thrombocytopenia or progressive onset type: results of a prospective study. Leukemia. 2012;26(4):746–56. PubMed PMID: 21926960.Google Scholar
Arai, S, Jagasia, M, Storer, B, Chai, X, Pidala, J, Cutler, C, et al. Global and organ-specific chronic graft-versus-host disease severity according to the 2005 NIH Consensus Criteria. Blood. 2011;118(15):4242–9. PubMed PMID: 21791424. Pubmed Central PMCID: 3204740.Google Scholar
Jacobsohn, DA, Kurland, BF, Pidala, J, Inamoto, Y, Chai, X, Palmer, JM, et al. Correlation between NIH composite skin score, patient-reported skin score, and outcome: results from the Chronic GVHD Consortium. Blood. 2012;120(13):2545–52; quiz 774. PubMed PMID: 22773386. Pubmed Central PMCID: 3460679.Google Scholar
Inamoto, Y, Chai, X, Kurland, BF, Cutler, C, Flowers, ME, Palmer, JM, et al. Validation of measurement scales in ocular graft-versus-host disease. Ophthalmology. 2012;119(3):487–93. PubMed PMID: 22153706. Pubmed Central PMCID: 3294118.CrossRefGoogle ScholarPubMed
Arora, M, Pidala, J, Cutler, CS, Chai, X, Kurland, B, Jacobsohn, DA, et al. Impact of prior acute GvHD on chronic GvHD outcomes: a chronic graft versus host disease consortium study. Leukemia. 2013;27(5):1196–201. PubMed PMID: 23047477.Google Scholar
Pidala, J, Kurland, B, Chai, X, Majhail, N, Weisdorf, DJ, Pavletic, S, et al. Patient-reported quality of life is associated with severity of chronic graft-versus-host disease as measured by NIH criteria: report on baseline data from the Chronic GvHD Consortium. Blood. 2011;117(17):4651–7. PubMed PMID: 21355084. Pubmed Central PMCID: 3099579.Google Scholar
Pidala, J, Chai, X, Kurland, BF, Inamoto, Y, Flowers, ME, Palmer, J, et al. Analysis of gastrointestinal and hepatic chronic grant-versus-host disease manifestations on major outcomes: a chronic grant-versus-host disease consortium study. Biol Blood Marrow Transplant. 2013;19(5):784–91. PubMed PMID: 23395601. Pubmed Central PMCID: 3896215.Google Scholar
Pidala, J, Kurland, BF, Chai, X, Vogelsang, G, Weisdorf, DJ, Pavletic, S, et al. Sensitivity of changes in chronic graft-versus-host disease activity to changes in patient-reported quality of life: results from the Chronic Graft-versus-Host Disease Consortium. Haematologica. 2011;96(10):1528–35. PubMed PMID: 21685473. Pubmed Central PMCID: 3186315.CrossRefGoogle ScholarPubMed
Pidala, J, Vogelsang, G, Martin, P, Chai, X, Storer, B, Pavletic, S, et al. Overlap subtype of chronic graft-versus-host disease is associated with an adverse prognosis, functional impairment, and inferior patient-reported outcomes: a Chronic Graft-versus-Host Disease Consortium study. Haematologica. 2012;97(3):451–8. PubMed PMID: 22058206. Pubmed Central PMCID: 3291602.CrossRefGoogle ScholarPubMed
Vigorito, AC, Campregher, PV, Storer, BE, Carpenter, PA, Moravec, CK, Kiem, HP, et al. Evaluation of NIH consensus criteria for classification of late acute and chronic GVHD. Blood. 2009;114(3):702–8. PubMed PMID: 19470693. Pubmed Central PMCID: 2713471.Google Scholar
Baird, K, Steinberg, SM, Grkovic, L, Pulanic, D, Cowen, EW, Mitchell, SA, et al. National Institutes of Health chronic graft-versus-host disease staging in severely affected patients: organ and global scoring correlate with established indicators of disease severity and prognosis. Biol Blood Marrow Transplant. 2013;19(4):632–9. PubMed PMID: 23340040. Pubmed Central PMCID: 3619213.CrossRefGoogle ScholarPubMed
Jagasia, M, Giglia, J, Chinratanalab, W, Dixon, S, Chen, H, Frangoul, H, et al. Incidence and outcome of chronic graft-versus-host disease using National Institutes of Health consensus criteria. Biol Blood Marrow Transplant. 2007;13(10):1207–15. PubMed PMID: 17889358.Google Scholar
Arora, M, Nagaraj, S, Witte, J, DeFor, TE, MacMillan, M, Burns, LJ, et al. New classification of chronic GvHD: added clarity from the consensus diagnoses. Bone Marrow Transplant. 2009;43(2):149–53. PubMed PMID: 18794869.Google Scholar
Flowers, ME, Inamoto, Y, Carpenter, PA, Lee, SJ, Kiem, HP, Petersdorf, EW, et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria. Blood. 2011;117(11):3214–9. PubMed PMID: 21263156. Pubmed Central PMCID: 3062319.CrossRefGoogle ScholarPubMed
Aki, SZ, Inamoto, Y, Barry, ; S, Carpenter, P, Lee, S, Martin, P, et al. Confounding Factors Affecting the National Institutes ofHealth (NIH) Chronic GVHD Organ-Specific Score and Global Severity. Biol Blood Marrow Transplant. 2014;20:265.CrossRefGoogle Scholar
Arora, M, Klein, JP, Weisdorf, DJ, Hassebroek, A, Flowers, ME, Cutler, CS, et al. Chronic GVHD risk score: a Center for International Blood and Marrow Transplant Research analysis. Blood. 2011;117(24):6714-20. PubMed PMID: 21493797. Pubmed Central PMCID: 3123030.Google Scholar
Palmer, J, Williams, K, Inamoto, Y, Chai, X, Martin, PJ, Tomas, LS, et al. Pulmonary symptoms measured by the national institutes of health lung score predict overall survival, nonrelapse mortality, and patient-reported outcomes in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(3):337–44. PubMed PMID: 24315845. Pubmed Central PMCID: 3973401.CrossRefGoogle ScholarPubMed
Jagasia, MH, Greinix, HT, Arora, M, Williams, KM, Wolff, D, Cowen, EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group Report. Biol Blood Marrow Transplant. 2015;21(3):389401 e1. PubMed PMID: 25529383. Pubmed Central PMCID: 4329079.Google Scholar
Carpenter, PA, Kitko, CL, Elad, S, Flowers, ME, Gea-Banacloche, JC, Halter, JP, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: V. The 2014 Ancillary Therapy and Supportive Care Working Group Report. Biol Blood Marrow Transplant. 2015 Mar 31. PubMed PMID: 25838185.Google Scholar
Shulman, HM, Cardona, DM, Greenson, JK, Hingorani, S, Horn, T, Huber, E, et al. NIH Consensus development project on criteria for clinical trials in chronic graft-versus-host disease: II. The 2014 Pathology Working Group Report. Biol Blood Marrow Transplant. 2015;21(4):589603. PubMed PMID: 25639770. Pubmed Central PMCID: 4359636.Google Scholar
Paczesny, S, Hakim, FT, Pidala, J, Cooke, KR, Lathrop, J, Griffith, LM, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: III. The 2014 Biomarker Working Group Report. Biol Blood Marrow Transplant. 2015;21(5):780–92. PubMed PMID: 25644957. Pubmed Central PMCID: 4408233.Google Scholar
Lee, SJ, Wolff, D, Kitko, C, Koreth, J, Inamoto, Y, Jagasia, M, et al. Measuring Therapeutic Response in Chronic Graft-versus-Host Disease. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2014 Response Criteria Working Group Report. Biol Blood Marrow Transplant. 2015;21(6):984–99. PubMed PMID: 25796139.Google Scholar
Martin, PJ, Lee, SJ, Przepiorka, D, Horowitz, MM, Koreth, J, Vogelsang, GB, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: VI. The 2014 Clinical Trial Design Working Group Report. Biol Blood Marrow Transplant. 2015 May 15. PubMed PMID: 25985921.Google Scholar
Choi, J, Ziga, ED, Ritchey, J, Collins, L, Prior, JL, Cooper, ML, et al. IFNgammaR signaling mediates alloreactive T-cell trafficking and GVHD. Blood. 2012;120(19):4093-103. PubMed PMID: 22972985. Pubmed Central PMCID: 3496960.Google Scholar
Magenau, JM, Qin, X, Tawara, I, Rogers, CE, Kitko, C, Schlough, M, et al. Frequency of CD4(+)CD25(hi)FOXP3(+) regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol Blood Marrow Transplant. 2010;16(7):907-14. PubMed PMID: 20302964. Pubmed Central PMCID: 2916071.CrossRefGoogle ScholarPubMed
Allen, JL, Fore, MS, Wooten, J, Roehrs, PA, Bhuiya, NS, Hoffert, T, et al. B cells from patients with chronic GVHD are activated and primed for survival via BAFF-mediated pathways. Blood. 2012;120(12):2529–36. PubMed PMID: 22896003. Pubmed Central PMCID: 3448264.Google Scholar
Subramaniam, DS, Fowler, DH, Pavletic, SZ. Chronic graft-versus-host disease in the era of reduced-intensity conditioning. Leukemia. 2007 Mar 22. PubMed PMID: 17377592. eng.Google Scholar
Valcarcel, D, Sierra, J, Wang, T, Kan, F, Gupta, V, Hale, GA, et al. One-antigen mismatched related versus HLA-matched unrelated donor hematopoietic stem cell transplantation in adults with acute leukemia: Center for International Blood and Marrow Transplant Research results in the era of molecular HLA typing. Biol Blood Marrow Transplant. 2011;17(5):640–8. PubMed PMID: 20674756. Pubmed Central PMCID: 3355271.Google Scholar
Lee, SJ, Klein, JP, Barrett, AJ, Ringden, O, Antin, JH, Cahn, JY, et al. Severity of chronic graft-versus-host disease: association with treatment-related mortality and relapse. Blood. 2002;100(2):406-14. PubMed PMID: 12091329. eng.CrossRefGoogle ScholarPubMed
Moore, J, Nivison-Smith, I, Goh, K, Ma, D, Bradstock, K, Szer, J, et al. Equivalent survival for sibling and unrelated donor allogeneic stem cell transplantation for acute myelogenous leukemia. Biol Blood Marrow Transplant. 2007;13(5):601–7. PubMed PMID: 17448920.Google Scholar
al Jurf, M, Aranha, F, Annassetti, C, Apperley, JF, Baynes, R, Bensinger, WI, et al. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: An individual patient data meta-analysis of nine randomized trials. J Clin Oncol. 2005;23(22):5074–87.Google Scholar
Anasetti, C, Logan, BR, Lee, SJ, Waller, EK, Weisdorf, DJ, Wingard, JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367(16):1487–96. PubMed PMID: 23075175. Pubmed Central PMCID: 3816375.Google Scholar
Morton, J, Hutchins, C, Durrant, S. Granulocyte-colony-stimulating factor (G-CSF)-primed allogeneic bone marrow: significantly less graft-versus-host disease and comparable engraftment to G-CSF-mobilized peripheral blood stem cells. Blood. 2001;98(12):3186–91. PubMed PMID: 11719353. eng.Google Scholar
Majhail, NS, Chitphakdithai, P, Logan, B, King, R, Devine, S, Rossmann, SN, et al. Significant improvement in survival after unrelated donor hematopoietic cell transplantation in the recent era. Biol Blood Marrow Transplant. 2015;21(1):142–50. PubMed PMID: 25445638. Pubmed Central PMCID: 4272902.Google Scholar
Weisdorf, DJ, Nelson, G, Lee, SJ, Haagenson, M, Spellman, S, Antin, JH, et al. Sibling versus unrelated donor allogeneic hematopoietic cell transplantation for chronic myelogenous leukemia: refined HLA matching reveals more graft-versus-host disease but not less relapse. Biol Blood Marrow Transplant. 2009;15(11):1475–8. PubMed PMID: 19822308. Pubmed Central PMCID: 2929002.Google Scholar
Balon, J, Halaburda, K, Bieniaszewska, M, Reichert, M, Bieniaszewski, L, Piekarska, A, et al. Early complete donor hematopoietic chimerism in peripheral blood indicates the risk of extensive graft-versus-host disease. Bone Marrow Transplant. 2005;35(11):1083–8. PubMed PMID: 15821766. eng.Google Scholar
Pavletic, SZ, Carter, SL, Kernan, NA, Henslee-Downey, J, Mendizabal, AM, Papadopoulos, E, et al. Influence of T-cell depletion on chronic graft-versus-host disease: results of a multicenter randomized trial in unrelated marrow donor transplantation. Blood. 2005;106(9):3308-13. PubMed PMID: 16046530. eng.CrossRefGoogle ScholarPubMed
Filipovich, AH, Weisdorf, D, Pavletic, S, Socie, G, Wingard, JR, Lee, SJ, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11(12):945-56. PubMed PMID: 16338616.Google Scholar
Jacobsohn, DA, Arora, M, Klein, JP, Hassebroek, A, Flowers, ME, Cutler, CS, et al. Risk factors associated with increased nonrelapse mortality and with poor overall survival in children with chronic graft-versus-host disease. Blood. 2011;118(16):4472–9. PubMed PMID: 21878671. Pubmed Central PMCID: 3204914.CrossRefGoogle ScholarPubMed
Cho, BS, Min, CK, Eom, KS, Kim, YJ, Kim, HJ, Lee, S, et al. Feasibility of NIH consensus criteria for chronic graft-versus-host disease. Leukemia. 2009;23(1):7884. PubMed PMID: 18830253.CrossRefGoogle ScholarPubMed
Stewart, BL, Storer, B, Storek, J, Deeg, HJ, Storb, R, Hansen, JA, et al. Duration of immunosuppressive treatment for chronic graft-versus-host disease. Blood. 2004 1;104(12):3501–6. PubMed PMID: 15292060.Google Scholar
Wolff, D, Schleuning, M, von Harsdorf, S, Bacher, U, Gerbitz, A, Stadler, M, et al. Consensus Conference on Clinical Practice in Chronic GVHD: Second-Line Treatment of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2011;17(1):117. PubMed PMID: 20685255.Google Scholar
Inamoto, Y, Flowers, ME. Treatment of chronic graft-versus-host disease in 2011. Curr Opin Hematol. 2011;18(6):414-20. PubMed PMID: 21912257. Pubmed Central PMCID: 3276600.Google Scholar
Cutler, C, Miklos, D, Kim, HT, Treister, N, Woo, SB, Bienfang, D, et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood. 2006;108(2):756-62. PubMed PMID: 16551963.Google Scholar
Lopez, F, Parker, P, Nademanee, A, Rodriguez, R, Al-Kadhimi, Z, Bhatia, R, et al. Efficacy of mycophenolate mofetil in the treatment of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2005;11(4):307-13. PubMed PMID: 15812396.CrossRefGoogle ScholarPubMed
Couriel, D, Hosing, C, Saliba, R, Shpall, EJ, Andelini, P, Popat, U, et al. Extracorporeal photopheresis for acute and chronic graft-versus-host disease: does it work? Biol Blood Marrow Transplant. 2006 (1 Suppl 2):3740. PubMed PMID: 16399600. eng.Google Scholar
Couriel, DR, Saliba, R, Escalon, MP, Hsu, Y, Ghosh, S, Ippoliti, C, et al. Sirolimus in combination with tacrolimus and corticosteroids for the treatment of resistant chronic graft-versus-host disease. Br J Haematol. 2005;130(3):409-17. PubMed PMID: 16042691.Google Scholar
Lee, SJ, Kim, HT, Ho, VT, Cutler, C, Alyea, EP, Soiffer, RJ, et al. Quality of life associated with acute and chronic graft-versus-host disease. Bone Marrow Transplant. 2006;38(4):305-10. PubMed PMID: 16819438.Google Scholar

References

Leblond, V, Davi, F, Charlotte, F, Dorent, R, Bitker, MO, Sutton, L et al. Post-transplant lymphoproliferative disorders not associated with Epstein–Barr virus: a distinct entity? J Clin Oncol 1998; 16(6):2052-2059.Google Scholar
Landgren, O, Gilbert, ES, Rizzo, JD, Socie, G, Banks, PM, Sobocinski, KA et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood 2009; 113(20):4992-5001.CrossRefGoogle ScholarPubMed
Curtis, RE, Travis, LB, Rowlings, PA, Socie, G, Kingma, DW, Banks, PM et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 1999; 94(7):2208-2216.Google Scholar
Swinnen, LJ, Costanzo-Nordin, MR, Fisher, SG, O’Sullivan, EJ, Johnson, MR, Heroux, AL et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac- transplant recipients. New Engl J Med 1990; 323:1723-1728.Google Scholar
Kanakry, JA, Kasamon, YL, Bolanos-Meade, J, Borrello, IM, Brodsky, RA, Fuchs, EJ et al. Absence of post-transplantation lymphoproliferative disorder after allogeneic blood or marrow transplantation using post-transplantation cyclophosphamide as graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant 2013; 19(10):1514-1517.Google Scholar
Crane, G, Powell, H, Kostadinov, R, Ambinder, RF, Swinnen, LJ, Borrowitz, M et al. A Rise in CNS lymphoproliferative disease incidence reveals a protective role of calcineurin inhibitors. Proc ASH 2014;3020.Google Scholar
Ho, M, Jaffe, R, Miller, G, Breinig, MK, Dummer, JS, Makowka, L et al. The frequency of Epstein–Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation 1988; 45:719-727.Google Scholar
Sanz, J, Arango, M, Senent, L, Jarque, I, Montesinos, P, Sempere, A et al. EBV-associated post-transplant lymphoproliferative disorder after umbilical cord blood transplantation in adults with hematological diseases. Bone Marrow Transplant 2014; 49(3):397-402.CrossRefGoogle ScholarPubMed
Blaes, AH, Cao, Q, Wagner, JE, Young, JA, Weisdorf, DJ, Brunstein, CG. Monitoring and preemptive rituximab therapy for Epstein–Barr virus reactivation after antithymocyte globulin containing nonmyeloablative conditioning for umbilical cord blood transplantation. Biol Blood Marrow Transplant 2010; 16(2):287-291.Google Scholar
Swinnen, LJ, LeBlanc, M, Grogan, TM, Gordon, LI, Stiff, PJ, Miller, AM et al. Prospective study of sequential reduction in immunosuppression, interferon alpha-2B, and chemotherapy for posttransplantation lymphoproliferative disorder. Transplantation 2008; 86(2):215-222.Google Scholar
Trappe, R, Oertel, S, Leblond, V, Mollee, P, Sender, M, Reinke, P et al. Sequential treatment with rituximab followed by CHOP chemotherapy in adult B-cell post-transplant lymphoproliferative disorder (PTLD): the prospective international multicentre phase 2 PTLD-1 trial. Lancet Oncol 2012; 13(2):196-206.Google Scholar
Styczynski, J, Gil, L, Tridello, G, Ljungman, P, Donnelly, JP, van d, V et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis 2013; 57(6):794-802.Google Scholar
Papadopoulos, EB, Ladanyi, M, Emanuel, D, Mackinnon, S, Boulad, F, Carabasi, MH et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994; 330(17):1185-1191.Google Scholar
O’Reilly, RJ, Small, TN, Papadopoulos, E, Lucas, K, Lacerda, J, Koulova, L. Biology and adoptive cell therapy of Epstein–Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. [Review] [186 refs]. Immunol Rev 1997; 157:195-216.Google Scholar
Bollard, CM, Rooney, CM, Heslop, HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol 2012; 9(9):510-519.Google Scholar
Doubrovina, E, Oflaz-Sozmen, B, Prockop, SE, Kernan, NA, Abramson, S, Teruya-Feldstein, J et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 2012; 119(11):2644-2656.Google Scholar
Bollard, CM, Savoldo, B, Rooney, CM, Heslop, HE. Adoptive T-cell therapy for EBV-associated post-transplant lymphoproliferative disease. Acta Haematol 2003; 110(2-3):139-148.Google Scholar
Rooney, CM, Smith, CA, Ng, CY, Loftin, SK, Sixbey, JW, Gan, Y et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92(5):1549-1555.CrossRefGoogle ScholarPubMed
Gottschalk, S, Ng, CY, Perez, M, Smith, CA, Sample, C, Brenner, MK et al. An Epstein–Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 2001; 97(4):835-843.Google Scholar
Icheva, V, Kayser, S, Wolff, D, Tuve, S, Kyzirakos, C, Bethge, W et al. Adoptive transfer of Epstein-Barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 2013; 31(1):39-48.CrossRefGoogle ScholarPubMed
Gerdemann, U, Katari, UL, Papadopoulou, A, Keirnan, JM, Craddock, JA, Liu, H et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther 2013; 21(11):2113-2121.Google Scholar
Papadopoulou, A, Gerdemann, U, Katari, UL, Tzannou, I, Liu, H, Martinez, C et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HCT. Sci Transl Med 2014; 6(242):242ra83.Google Scholar
Haque, T, Wilkie, GM, Taylor, C, Amlot, PL, Murad, P, Iley, A et al. Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 2002; 360(9331):436-442.Google Scholar
Haque, T, Wilkie, GM, Jones, MM, Higgins, CD, Urquhart, G, Wingate, P et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 2007; 110(4):1123-1131.Google Scholar
Haque, T, McAulay, KA, Kelly, D, Crawford, DH. Allogeneic T-cell therapy for Epstein–Barr virus-positive posttransplant lymphoproliferative disease: long-term follow-up. Transplantation 2010; 90(1):93-94.Google Scholar
Vickers, MA, Wilkie, GM, Robinson, N, Rivera, N, Haque, T, Crawford, DH et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein–Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol 2014; 167(3):402-410.Google Scholar
Leen, AM, Bollard, CM, Mendizabal, AM, Shpall, EJ, Szabolcs, P, Antin, JH et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 2013; 121(26):5113-5123.Google Scholar
Gallot, G, Vollant, S, Saiagh, S, Clemenceau, B, Vivien, R, Cerato, E et al. T-cell therapy using a bank of EBV-specific cytotoxic T cells: lessons from a phase I/II feasibility and safety study. J Immunother 2014; 37(3):170-179.Google Scholar
Ricciardelli, I, Blundell, MP, Brewin, J, Thrasher, A, Pule, M, Amrolia, PJ. Towards gene therapy for EBV-associated posttransplant lymphoma with genetically modified EBV-specific cytotoxic T cells. Blood 2014; 124(16):2514-2522.Google Scholar
Papadopoulou, A, Krance, RA, Allen, CE, Lee, D, Rooney, CM, Brenner, MK et al. Systemic inflammatory response syndrome after administration of unmodified T lymphocytes. Mol Ther 2014; 22(6):1134-1138.Google Scholar
van d, V, Mori, T, Stevens, WB, de Haan, AF, Stelma, FF, Blijlevens, NM et al. Reduced PTLD-related mortality in patients experiencing EBV infection following allo-SCT after the introduction of a protocol incorporating preemptive rituximab. Bone Marrow Transplant 2013; 48(11):1465-1471.Google Scholar
Liu, Q, Xuan, L, Liu, H, Huang, F, Zhou, H, Fan, Z et al. Molecular monitoring and stepwise preemptive therapy for Epstein–Barr virus viremia after allogeneic stem cell transplantation. Am J Hematol 2013; 88(7):550-555.Google Scholar
Dominietto, A, Tedone, E, Soracco, M, Bruno, B, Raiola, AM, Van Lint, MT et al. In vivo B-cell depletion with rituximab for alternative donor hemopoietic SCT. Bone Marrow Transplant 2012; 47(1):101-106.Google Scholar
Laport, G, Wu, J, Logan, BR, Bachanova, V, Hosing, CM, Fenske, TS et al. Reduced intensity conditioning (RIC) with rituximab yields excellent outcomes after allogeneic hematopoietic cell transplantation (alloHCT) for relapsed follicular lymphoma (FL): a phase ii multicenter trial from the Blood and Marrow Transplant Network (BMT CTN 0701). Proc ASH 2014;682.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×