Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T10:09:31.883Z Has data issue: false hasContentIssue false

10 - Icebergs and the future

from Part II - Icebergs and their impacts

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 220 - 236
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Darwin, E., The botanic garden, a poem in two parts. Part 1. Containing the economy of vegetation. London: J. Johnson (1791), footnote to line 529.Google Scholar
Dewry, A., Climate change worries in the eighteenth century. The Freeman (1998). http://fee.org/freeman/detail/climate-change-worries-in-the-eighteenth-century#axzz2s0aM8FLv (last accessed 9 March 2015).Google Scholar
The Lunar Society. http://lunarsociety.org.uk/ (last accessed 9 March 2015).Google Scholar
Parker, D. E., Legg, T. P. and Folland, C. K., A new daily Central England Temperature Series. Int. J. Climatol., 12 (1992), 317–42.CrossRefGoogle Scholar
South with Endurance. Shackleton’s Antarctic Expedition 1914–1917. The photographs of Frank Hurley, ed. Rex, T.. St. Helens, U. K.: Ted Smart (2011).Google Scholar
Snyder, J., Tourism in the Polar Regions. The sustainability challenge. Paris: UNEP DTIE (2007).Google Scholar
Stocker, T. F., Dahe, Q., Plattner, G. K., et al., Technical Summary. In: Climate Change 2013: The physical basis. Contribution of Working Group 1 of the Intergovernmental Report on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G. K., et al. Cambridge: Cambridge University Press (2013), pp. 33115.Google Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.CrossRefGoogle ScholarPubMed
Seale, A., Christoffersen, P., Mugford, R. I. and O’Leary, M., Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf., 116 (2011), F03013, doi:10.1029/2010JF001847.CrossRefGoogle Scholar
Csatho, B., Schenk, T., Van der Veen, C. J. and Krabill, W.B., Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little Ice Age. J. Glaciol., 54 (2008), 131–44.CrossRefGoogle Scholar
Rignot, E., Box, J. E., Burgess, E. and Hanna, E., Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35 (2008), L20502, doi:10.1029/2008GL035417.CrossRefGoogle Scholar
Masson-Delmotte, V., Swingedouw, D., Landais, A., et al., Greenland climate change: from the past to the future. Wiley Interdiscipl. Rev. Clim. Change, 3 (2012), 427–49.Google Scholar
Mueller, D. R., Vincent, W. F. and Jeffries, M. O., Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30 (2003), 2031, doi:10.1029/2003GL017931.CrossRefGoogle Scholar
Muenchow, A., Padman, L. and Fricker, H. A., Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol., 60 (2014), 489–99.Google Scholar
Khan, S. A., Kjaer, K. H., Bevis, M., et al., Sustained mass loss of the northeastern Greenland ice sheet triggered by regional warming. Nature Clim. Change, 4 (2014), 292–9.CrossRefGoogle Scholar
Mouginot, J., Rignot, E. and Scheuchl, B., Sustained increased in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett., 41 (2014), 1576–84.CrossRefGoogle Scholar
Thomas, R., Scheuchl, B., Frederick, E., et al., Continued slowing of the Ross Ice Shelf and thickening of West Antarctic ice streams. J. Glaciol., 59 (2013), 838–44.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Collins, M., Knutti, R., Arblaster, J., et al., Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013: The physical basis. Contribution of Working Group 1 of the Intergovernmental Report on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G. K., et al. Cambridge: Cambridge University Press (2013), pp. 1029–136.Google Scholar
Straneo, F., Heimbach, P., Sergienko, O., et al., Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteor. Soc., 94 (2013), 1131–44.CrossRefGoogle Scholar
Depoorter, M. A., Bamber, J. L., Griggs, J. A., et al., Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502 (2013), 8992.CrossRefGoogle ScholarPubMed
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Hanna, E., Huybrechts, P., Cappelen, J., et al., Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res. Atmos., 116 (2011), D24121, doi:10.1029/2011JD016387.CrossRefGoogle Scholar
Winkelmann, R., Levermann, A., Martin, M. A. and Frieler, K., Increased future ice discharge from Antarctica owing to higher snowfall. Nature, 492 (2012), 239–42.CrossRefGoogle ScholarPubMed
Levermann, A., Winkelmann, R., Nowicki, S., et al., Projecting Antarctic ice discharge using response functions from SEARISE ice-sheet models. Earth-System Dyn., 5 (2014), 271–93.Google Scholar
Nick, F. M., Vieli, A., Andersen, M. L., et al., Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497 (2013), 235–8.CrossRefGoogle Scholar
Hellmer, H. H., Kauker, F., Timmermann, R., et al., Twenty-first century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485 (2012), 225–8.CrossRefGoogle ScholarPubMed
Barrand, N. E., Hindmarsh, R. C. A., Arthern, R. J., et al., Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200. J. Glaciol., 59 (2013), 397409.CrossRefGoogle Scholar
Fogwill, C. J., Turney, C. S. M., Meissner, K. J., et al., Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past changes and future implications. J. Quaternary Sci., 29 (2014), 91–8.CrossRefGoogle Scholar
Mengel, M. and Levermann, A., Ice plug prevents irreversible discharge from East Antarctica. Nature Clim. Change, 4 (2014), 451–5.CrossRefGoogle Scholar
IPCC, Climate change 2014: synthesis report. Core writing team, ed. Pachauri, R. K. and Meyer, L. A., Cambridge: Cambridge University Press (2014).Google Scholar
Lasserre, F. and Pelletier, S., Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners’ intentions. J. Trans. Geog., 19 (2011), 1465–73.Google Scholar
Bigg, G. R., Marsh, R. A., Wilton, D. J. and Ivchenko, V., B31 – a giant iceberg in the Southern Ocean. Ocean Challenge, 20 (2014), 32–4.Google Scholar
Marsh, R., Ivchenko, V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547-62.Google Scholar
Zhang, X., Shou, J. and Zhou, H., Scale and scope of maritime cargoes through the Arctic Passages. Adv. Polar Sci., 24 (2013), 158–66.Google Scholar
Zhang, Y. G., Pagini, M., Liu, Z., et al., A 40-million year history of atmospheric CO2. Phil. Trans. Roy. Soc. A, 371 (2013), 20130096, doi:10.1098/rsta.2013.0096.CrossRefGoogle Scholar
Alley, R. B., Andrews, J. T., Brigham-Grette, J., et al., History of the Greenland Ice Sheet: paleoclimatic insights. Quaternary Sci. Rev., 29 (2012), 1728–56.Google Scholar
Hansen, J., Sato, M., Russell, G. and Kharecha, P., Climate sensitivity, sea level, and atmospheric carbon dioxide. Phil. Trans. Roy. Soc. A, 371 (2013), 20120294, doi:10.1098/rsta.2012.0294.CrossRefGoogle ScholarPubMed
Hay, W. W., Can humans force a return to a ‘Cretaceous’ climate? Sediment. Geol., 235 (2011), 526.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×