Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T17:12:27.619Z Has data issue: false hasContentIssue false

35 - Peroxisomal Diseases

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Paul A. Watkins M.D., Ph.D.
Affiliation:
Professor, Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, Maryland
Kathleen B. Schwarz M.D.
Affiliation:
Professor, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Director, Pediatric Liver Center, Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, Maryland
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

PEROXISOMAL STRUCTURE AND FUNCTIONS

General Aspects of Peroxisomes

Peroxisomes have the distinction of being the last true organelle discovered. They were first identified in renal proximal tubule cells by a Swedish graduate student in 1954. Initially called microbodies, these organelles were studied intensively by de Duve and coworkers. Because they contained enzymes that both produced (e.g., amino acid and urate oxidases) and degraded (e.g., catalase) hydrogen peroxide, de Duve and Baudhuin [1] proposed the name peroxisomes. Microbodies found in some lower organisms and plants were named for the specialized functions that they carry out. For example, glyoxysomes of fungi and plants contain the five enzymes of the glyoxylate cycle and glycosomes house the enzymes of glycolysis in trypanosomes [2, 3]. Peroxisomes have been found in essentially all plant and animal cells with the exception of mature erythrocytes, and they range in size from about 0.1 μm (microperoxisomes of intestine and brain) up to 1.0 μm (characteristic of hepatic and renal peroxisomes; range: 0.2–1.0 μm) [4] (Figure 35.1).

A single lipid bilayer comprises the peroxisomal membrane. The organelle's matrix is finely granular, but microcrystalline cores of urate oxidase are present in the hepatic peroxisomes of some species (e.g., rats). No cores are found in human peroxisomes because humans lack urate oxidase. Unlike chloroplasts and mitochondria, peroxisomes contain no DNA, although it has been speculated that all three organelles evolved from endosymbionts. Since discovery of peroxisomes, numerous membrane proteins and matrix enzymes have been identified.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duve, C, Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol Rev 1966;46:323–57.CrossRefGoogle Scholar
Breidenbach, R W, Beevers, H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 1967;27:462–9.CrossRefGoogle Scholar
Opperdoes, F R, Borst, P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 1977;80:360–4.CrossRefGoogle Scholar
Hruban, Z, Vigil, E L, Slesers Aet, al. Microbodies: constituent organelles of animal cells. Lab Invest 1972;27:184–91.Google ScholarPubMed
Lazarow, P B, Fujiki, Y. Biogenesis of peroxisomes. Annu Rev Cell Biol 1985;1:489–530.CrossRefGoogle ScholarPubMed
Purdue, P E, Lazarow, P B. Peroxisomal biogenesis: multiple pathways of protein import. J Biol Chem 1994;269:30065–8.Google ScholarPubMed
Kunau, W H. Peroxisome biogenesis: end of the debate. Curr Biol 2005;15:R774–6.CrossRefGoogle ScholarPubMed
Hoepfner, D, Schildknegt, D, Braakman, I. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 2005;122:85–95.CrossRefGoogle ScholarPubMed
Gould, S J, Keller, G A, Hosken, N. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 1989;108:1657–64.CrossRefGoogle ScholarPubMed
Subramani, S. Protein translocation into peroxisomes. J Biol Chem 1996;271:32483–6.CrossRefGoogle ScholarPubMed
Klein, A T, Berg, M, Bottger, G. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 2002;19:19.Google Scholar
Mcnew, J A, Goodman, J M. An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 1994;127:1245–57.CrossRefGoogle ScholarPubMed
Michels, P A, Moyersoen, J, Krazy, H. Peroxisomes, glyoxysomes and glycosomes [review]. Mol Membr Biol 2005;22:133–45.CrossRefGoogle Scholar
Slawecki, M L, Dodt, G, Steinberg, S. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J Cell Sci 1995;108:1817–29.Google ScholarPubMed
Weller, S, Gould, S J, Valle, D. Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 2003;4:165–211.CrossRefGoogle ScholarPubMed
Shimozawa, N, Tsukamoto, T, Nagase, T. Identification of a new complementation group of the peroxisome biogenesis disorders and PEX14 as the mutated gene. Hum Mutat 2004;23:552–8.CrossRefGoogle ScholarPubMed
Reuber, B E, Germain-Lee, E, Collins, C S. Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat Genet 1997;17:445–8.CrossRefGoogle ScholarPubMed
Portsteffen, H, Beyer, A, Becker, E. Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat Genet 1997;17:449–52.CrossRefGoogle ScholarPubMed
Shimozawa, N, Tsukamoto, T, Suzuki, Y. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Sci 1992;255:1132–4.CrossRefGoogle ScholarPubMed
Braverman, N, Steel, G, Obie, C. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 1997;15:369–76.CrossRefGoogle ScholarPubMed
Motley, A M, Hettema, E H, Hogenhout, E M. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat Genet 1997;15:377–80.CrossRefGoogle ScholarPubMed
Purdue, P E, Zhang, J W, Skoneczny, M. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 1997;15:381–4.CrossRefGoogle ScholarPubMed
Dodt, G, Braverman, N, Wong, C. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 1995;9:115–25.CrossRefGoogle ScholarPubMed
Wiemer, E A C, Nuttley, W M, Bertolaet, B L. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol 1995;130:51–65.CrossRefGoogle ScholarPubMed
Yahraus, T, Braverman, N, Dodt, G. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 1996;15:2914–23.Google ScholarPubMed
Chang, C C, Lee, W H, Moser, H. Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat Genet 1997;15:385–8.CrossRefGoogle ScholarPubMed
Okumoto, K, Itoh, R, Shimozawa, N. Mutations in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B. Hum Mol Genet 1998;7:1399–405.CrossRefGoogle ScholarPubMed
South, S T, Gould, S J. Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 1999;144:255–66.CrossRefGoogle ScholarPubMed
Matsuzono, Y, Kinoshita, N, Tamura, S. Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci U S A 1999;96:2116–21.CrossRefGoogle Scholar
Shimozawa, N, Suzuki, Y, Zhang, Z. Nonsense and temperature-sensitive mutations in PEX13 are the cause of complementation group H of peroxisome biogenesis disorders. Hum Mol Genet 1999;8:1077–83.CrossRefGoogle Scholar
Honsho, M, Tamura, S, Shimozawa, N. Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 1998;63:1622–30.CrossRefGoogle ScholarPubMed
Hess, R, Staubli, W, Riess, W. Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy- isobutyrate in the rat. Nature 1965;208:856–8.CrossRefGoogle ScholarPubMed
Subramani, S. Protein import into peroxisomes and biogenesis of the organelle. Ann Rev Cell Biol 1993;9:445–78.CrossRefGoogle ScholarPubMed
Reddy, J K, Goel, S K, Nemali, M R. Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase(3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci U S A 1986;83:1747–51.CrossRefGoogle ScholarPubMed
Rao, M S, Kokkinakis, D M, Subbarao, V. Peroxisome proliferator-induced hepatocarcinogenesis: levels of activating and detoxifying enzymes in hepatocellular carcinomas induced by ciprofibrate. Carcinogenesis 1987;8:19–23.CrossRefGoogle ScholarPubMed
Reddy, J K, Azarnoff, D L, Hignite, C E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 1980;283:397–8.CrossRefGoogle Scholar
Issemann, I, Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990;347:645–50.CrossRefGoogle ScholarPubMed
Mangelsdorf, D J, Thummel, C, Beato, M. The nuclear receptor superfamily: the second decade. Cell 1995;83:835–9.CrossRefGoogle ScholarPubMed
Braissant, O, Foufelle, F, Scotto, C. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996;137:354–66.CrossRefGoogle ScholarPubMed
Tugwood, J D, Issemann, I, Anderson, R G. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO Journal 1992;11:433–9.Google ScholarPubMed
Chu, R Y, Lin, Y, Rao, M S. Cooperative formation of higher order peroxisome proliferator-activated receptor and retinoid X receptor complexes on the peroxisome proliferator responsive element of the rat hydratase-dehydrogenase gene. J Biol Chem 1995;270:29636–9.Google Scholar
Kliewer, S A, Umesono, K, Noonan, D J. Convergence of 9-Cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992;358:771–4.CrossRefGoogle ScholarPubMed
Rao, M S, Reddy, J K. Hepatocarcinogenesis of peroxisome proliferators. Ann N Y Acad Sci 1996;804:573–87.CrossRefGoogle ScholarPubMed
Tugwood, J D, Aldridge, T C, Lambe, K G. Peroxisome proliferator-activated receptors: structures and function. Ann N Y Acad Sci 1996;804:252–65.CrossRefGoogle ScholarPubMed
Oliver, M F, Heady, J A, Morris, J N. A cooperative trial in the primary prevention of ischemic heart disease using clofibrate. Br Heart J 1978;40:1069–118.Google Scholar
Frick, M H, Elo, O, Haapa, K. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987;317:1237–45.CrossRefGoogle ScholarPubMed
Lazarow, P B, Duve, C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 1976;73:2043–6.CrossRefGoogle ScholarPubMed
Hashimoto, T. Purifiation, properties and biosynthesis o fperoxisomal beta-oxidation enzymes. In: Tanaka, K, Coates, P W. Fatty acid oxidation: clinical, biochemical and molecular aspects. New York: Alan R. Liss, 1990:138–52.Google Scholar
Almashanu, S, Valle, D. Peroxisomal ABC transporters. In: Holland, I B, Kuchler, K, Higgins, C F, Cole, S. ABC proteins: from bacteria to man. London: Academic Press, 2003:497–513.Google Scholar
Shindo, Y, Hashimoto, T. Acyl-coenzyme A synthetase and fatty acid oxidation in rat liver peroxisomes. J Biochem 1978;84:1177–81.CrossRefGoogle ScholarPubMed
Krisans, S K, Mortensen, R M, Lazarow, P B. Acyl-CoA synthetase in rat liver peroxisomes. Computer assisted analysis of cell fractionation experiments. J Biol Chem 1980;255:9599–607.Google ScholarPubMed
Osumi, T, Hashimoto, T, Ui, N. Purification and properties of acyl-CoA oxidase from rat liver. J Biochem (Tokyo) 1980;87:1735–46.CrossRefGoogle ScholarPubMed
Osumi, T, Hashimoto, T. Peroxisomal beta-oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun 1979;89:580–4.CrossRefGoogle ScholarPubMed
Miyazawa, S, Osumi, T, Hashimoto, T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem 1980;103:589–96.CrossRefGoogle ScholarPubMed
Palosaari, P M, Hiltunen, J K. Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem 1990;265:2446–9.Google ScholarPubMed
Singh, I, Moser, A E, Goldfischer, S. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci U S A 1984;81:4203–7.CrossRefGoogle ScholarPubMed
Vanhove, G F, Vanveldhoven, P P, Fransen, M. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates dihydroxycoprostanic and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem 1993;268:10335–44.Google Scholar
Dieuaide-Noubhani, M, Asselberghs, S, Mannaerts, G P. Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid. Biochem J 1997;325:367–73.CrossRefGoogle Scholar
Antonenkov, V D, Veldhoven, P P, Waelkens, E. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J Biol Chem 1997;272:26023–31.CrossRefGoogle Scholar
Wanders, R J, Denis, S, Wouters, F. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta- ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem Biophys Res Commun 1997;236:565–9.CrossRefGoogle ScholarPubMed
Qin, Y M, Poutanen, M H, Helander, H M. Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3- hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization. Biochem J 1997;321:21–8.CrossRefGoogle ScholarPubMed
Baes, M, Huyghe, S, Carmeliet, P. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 2000;275:16329–36.CrossRefGoogle Scholar
Verhoeven, N M, Wanders, R J, Poll-The, B T. The metabolism of phytanic acid and pristanic acid in man: a review. J Inherit Metab Dis 1998;21:697–728.CrossRefGoogle Scholar
Frolov, A, Cho, T H, Billheimer, J T. Sterol carrier protein-2, a new fatty acyl coenzyme a-binding protein. J Biol Chem 1996;271:31878–84.CrossRefGoogle ScholarPubMed
Leenders, F, Tesdorpf, J G, Markus, M. Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities. J Biol Chem 1996;271:5438–42.CrossRefGoogle ScholarPubMed
Wanders, R J, Tager, J M. Lipid metabolism in peroxisomes in relation to human disease. Mol Aspects Med 1998;19:69–154.CrossRefGoogle ScholarPubMed
Singh, H, Usher, S, Johnson, D. A comparative study of straight chain and branched chain fatty acid oxidation in skin fibroblasts from patients with peroxisomal disorders. J Lipid Res 1990;31:217–25.Google ScholarPubMed
Swinkels, B W, Gould, S J, Bodnar, A G. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 1991;10:3255–62.Google ScholarPubMed
Poll-The, B T, Roels, F, Ogier, H. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet 1988;42:422–34.Google Scholar
Watkins, P A, Chen, W W, Harris, C J. Peroxisomal bifunctional enzyme deficiency. J Clin Invest 1989;83:771–7.CrossRefGoogle ScholarPubMed
Grunsven, E G, Berkel, E, Mooijer, P A. Peroxisomal bifunctional protein deficiency revisited: resolution of its true enzymatic and molecular basis. Am J Hum Genet 1999;64:99–107.CrossRefGoogle ScholarPubMed
Singh, I, Moser, A B, Moser, H W. Adrenoleukodystrophy: Impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts and amniocytes. Pediatr Res 1984;18:286–90.CrossRefGoogle ScholarPubMed
Watkins, P A, McGuinness, M C, Raymond, G V. Distinction between peroxisomal bifunctional enzyme and Acyl-CoA oxidase deficiencies. Ann Neurol 1995;38:472–7.CrossRefGoogle ScholarPubMed
Natowicz, M R, Evans, J E, Kelley, R I. Urinary bile acids and peroxisomal bifunctional enzyme deficiency. Am J Med Genet 1996;63:356–62.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Schram, A W, Goldfischer, S, Roermund, C W T. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc Natl Acad Sci U S A 1987;84:2494–6.CrossRefGoogle ScholarPubMed
Ferdinandusse, S, Grunsven, E G, Oostheim, W. Reinvestigation of peroxisomal 3-ketoacyl-CoA thiolase deficiency: identification of the true defect at the level of d-bifunctional protein. Am J Hum Genet 2002;70:1589–93.CrossRefGoogle ScholarPubMed
Mosser, J, Lutz, Y, Stoeckel, M E. The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet 1994;3:265–71.CrossRefGoogle ScholarPubMed
Moore, S A, Hurt, E, Yoder, E. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 1995;36:2433–43.Google ScholarPubMed
Masters-Thomas, A, Bailes, J, Billimoria, J D. Heredopathia atactica polyneuritiformis (Refsum's disease): 2. Estimation of phytanic acid in foods. J Hum Nutr 1980;34:251–4.Google ScholarPubMed
Masters-Thomas, A, Bailes, J, Billimoria, J D. Heredopathia atactica polyneuritiformis (Refsum's disease): 1. Clinical features and dietary management. J Hum Nutr 1980;34:245–50.Google ScholarPubMed
Klenk, E, Kahlke, W. Uber das Vorkommen der 3,7,11,15-Tetramethylhexadecansaure (Phtansaure) in den Cholesterinestern and andern Lipoidfraktionen der Organe bei einen Krankheitsfall unbekannter Genese (Verdacht auf Heredopathia atactica polyneuritiformis, Refsum's syndrome). Hoppe-Seyler's Z Physiol Chem 1963;333:133–9.CrossRefGoogle Scholar
Watkins, P A, Howard, A E, Mihalik, S J. Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes. Biochim Biophys Acta 1994;1214:288–94.CrossRefGoogle ScholarPubMed
Mihalik, S J, Rainville, A M, Watkins, P A. Phytanic acid alpha-oxidation in rat liver peroxisomes – production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur J Biochem 1995;232:545–51.CrossRefGoogle ScholarPubMed
Verhoeven, N M, Schor, D S, ten Brink, H J. Resolution of the phytanic acid alpha-oxidation pathway: identification of pristanal as product of the decarboxylation of 2-hydroxyphytanoyl- CoA. Biochem Biophys Res Commun 1997;237:33–6.CrossRefGoogle ScholarPubMed
Jansen, G A, Brink, D M, Ofman, R. Identification of pristanal dehydrogenase activity in peroxisomes: conclusive evidence that the complete phytanic acid alpha-oxidation pathway is localized in peroxisomes. Biochem Biophys Res Commun 2001;283:674–9.CrossRefGoogle ScholarPubMed
Steinberg, S J, Wang, S J, Kim, D G. Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun 1999;257:615–21.CrossRefGoogle ScholarPubMed
Mihalik, S J, Morrell, J C, Kim, D. Identification of PAHX, a Refsum disease gene. Nature Genet 1997;17:185–9.CrossRefGoogle ScholarPubMed
Foulon, V, Antonenkov, V D, Croes, K. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3- methyl-branched fatty acids. Proc Natl Acad Sci U S A 1999;96:10039–44.CrossRefGoogle ScholarPubMed
Scotto, J M, Hadchouel, M, Odievre, M. Infantile phytanic acid storage disease, a possible variant of Refsum's disease: three cases, including ultrastructural studies of the liver. J Inherit Metab Dis 1982;5:83–90.CrossRefGoogle ScholarPubMed
Kase, F, Bjorkhem, I, Pedersen, J I. Formation of cholic acid from 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid by rat liver peroxisomes. J Lipid Res 1983;24:1560–7.Google ScholarPubMed
Schepers, L, Casteels, M, Verheyden, K. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver. Biochem J 1989;257:221–9.CrossRefGoogle ScholarPubMed
Vanveldhoven, P P, Croes, K, Asselberghs, S. Peroxisomal beta-oxidation of 2-methyl-branched acyl-CoA esters: stereospecific recognition of the 2S-methyl compounds by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase. FEBS Lett 1996;388:80–4.CrossRefGoogle Scholar
Ferdinandusse, S, Overmars, H, Denis, S. Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers in peroxisomal alpha-methylacyl-CoA racemase deficiency. J Lipid Res 2001;42:137–41.Google ScholarPubMed
Schmitz, W, Conzelmann, E. Stereochemistry of peroxisomal and mitochondrial beta-oxidation of alpha-methylacyl-coas. Eur J Biochem 1997;244:434–40.CrossRefGoogle ScholarPubMed
Horrocks, L A, Sharma, M. Plasmalogens and O-alkyl glycerophospholipids. In: Nawthorne, J N, Ansell, G B. Phospholipids. New comprehensive biochemistry. Amsterdam: Elsevier Biomedical Press, 1982:51–93.Google Scholar
Burdett, K, Larkins, L K, Das, A K. Peroxisomal localization of acyl-coenzyme a reductase (long chain alcohol forming) in guinea pig intestine mucosal cells. J Biol Chem 1991;266:12201–6.Google Scholar
Hajra, A K, Burke, C L, Jones, C L. Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J Biol Chem 1979;254:10896–900.Google Scholar
Jones, C L, Hajra, A K. Properties of guinea pig liver peroxisomal dihydroxyacetone phosphate acyltransferase. J Biol Chem 1980;255:8289–95.Google ScholarPubMed
Lazarow, P B, Moser, H W. Disorders of peroxisome biogenesis. In: Scriver, C R, Beaudet, A L, Sly, W S, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 1995:2287–324.Google Scholar
Thai, T P, Heid, H, Rackwitz, H R. Ether lipid biosynthesis: isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase. FEBS Lett 1997;420:205–11.CrossRefGoogle ScholarPubMed
Ofman, R, Hettema, E H, Hogenhout, E M. Acyl-CoA:dihydroxyacetonephosphate acyltransferase: cloning of the human cDNA and resolution of the molecular basis in rhizomelic chondrodysplasia punctata type 2. Hum Mol Genet 1998;7:847–53.CrossRefGoogle ScholarPubMed
Vet, E C, Broek, B T, Bosch[K8], H. Nucleotide sequence of human alkyl-dihydroxyacetonephosphate synthase cDNA reveals the presence of a peroxisomal targeting signal 2. Biochim Biophys Acta 1997;1346:25–9.CrossRefGoogle ScholarPubMed
Vet, E C, Ijlst, L, Oostheim, W. Alkyl-dihydroxyacetonephosphate synthase. Fate in peroxisome biogenesis disorders and identification of the point mutation underlying a single enzyme deficiency. J Biol Chem 1998;273:10296–301.CrossRefGoogle ScholarPubMed
Keller, G A, Barton, M C, Shapiro, D J. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells. Proc Natl Acad Sci U S A 1985;82:770–4.CrossRefGoogle ScholarPubMed
Appelkvist, E L. In vitro labeling of peroxisomal cholesterol with radioactive precursors. Biosci Rep 1987;7:853–8.CrossRefGoogle ScholarPubMed
Thompson, S L, Burrows, R, Laub, R J. Cholesterol synthesis in rat liver peroxisomes. Conversion of mevalonic acid to cholesterol. J Biol Chem 1987;262:17420–5.Google ScholarPubMed
Appelkvist, E L, Kalen, A. Biosynthesis of dolichol by rat liver peroxisomes. Eur J Biochem 1989;185:503–9.CrossRefGoogle ScholarPubMed
Biardi, L, Krisans, S K. Compartmentalization of cholesterol biosynthesis - Conversion of mevalonate to farnesyl diphosphate occurs in the peroxisomes. J Biol Chem 1996;271:1784–8.CrossRefGoogle ScholarPubMed
Stamellos, K D, Shackelford, J E, Tanaka, R D. Mevalonate kinase is localized in rat liver peroxisomes. J Biol Chem 1992;267:5560–8.Google ScholarPubMed
Biardi, L, Sreedhar, A, Zokaei, A. Mevalonate kinase is predominantly localized in peroxisomes and is defective in patients with peroxisome deficiency disorders. J Biol Chem 1994;269:1197–205.Google ScholarPubMed
Krisans, S K, Ericsson, J, Edwards, P A. Farnesyl-diphosphate synthase is localized in peroxisomes. J Biol Chem 1994;269:14165–9.Google ScholarPubMed
Hogenboom, S, Wanders, R J, Waterham, H R. Cholesterol biosynthesis is not defective in peroxisome biogenesis defective fibroblasts. Mol Genet Metab 2003;80:290–5.CrossRefGoogle Scholar
Kelley, R I. Review: the cerebrohepatorenal syndrome of Zellweger, morphologic and metabolic aspects. Am J Med Genet 1983;16:503–17.CrossRefGoogle ScholarPubMed
Hoffmann, G, Gibson, K M, Brandt, I K. Mevalonic aciduria – an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med 1986;314:1610–14.CrossRefGoogle ScholarPubMed
Noguchi, T, Takada, Y. Purification and properties of peroxisomal pyruvate (glyoxylate) aminotransferase from rat liver. Biochem J 1978;175:765–8.CrossRefGoogle ScholarPubMed
Danpure, C J, Jennings, P R, Leiper, J M. Targeting of alanine: glyoxylate aminotransferase in normal individuals and its mistargeting in patients with primary hyperoxaluria type 1. Ann N Y Acad Sci 1996;804:477–90.CrossRefGoogle ScholarPubMed
Danpure, C J, Purdue, P E. Primary hyperoxaluria. In: Scriver, C R, Beaudet, A L, Sly, W S, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 1995:2385–424.Google Scholar
Motley, A, Lumb, M J, Oatey, P B. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J Cell Biol 1995;131:95–109.CrossRefGoogle ScholarPubMed
Danpure, C J. Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. Bioessays 1997;19:317–26.CrossRefGoogle ScholarPubMed
Rothstein, M, Miller, L L. The conversion of lysine to pipecolic acid in the rat. J Biol Chem 1954;211:851–8.Google ScholarPubMed
Mihalik, S J, Mcguinness, M, Watkins, P A. Purification and characterization of peroxisomal L-pipecolic acid oxidase from monkey liver. J Biol Chem 1991;266:4822–30.Google ScholarPubMed
Dodt, G, Kim, D G, Reimann, S. L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is homologous to the monomeric sarcosine oxidases. Biochem. J. 1999;345:487–94.CrossRefGoogle Scholar
Kerckaert, I, Poll-The, B T, WandersRJA, et al RJA, et al. Hepatic peroxisomes in isolated hyperpipecolic acidaemia justify its classification as single peroxisomal enzyme deficiency. J Inher Metab Dis 1999;22 Suppl 1:29.Google Scholar
Frerman, F E, Goodman, S I. Nuclear-encoded defects of the mitochondrial respiratory chain, including glutaric acidemia type II. In: Scriver, C R, Beaudet, A L, Sly, W S, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 1995:1611–29.Google Scholar
Ghadimi, H, Chou, W S, Kesner, L. Biosynthesis of saccharopine and pipecolic acid from L- and DL- 14 C- lysine by human and dog liver in vitro. Biochem Med 1971;5:56–66.CrossRefGoogle Scholar
Chang, Y E. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem 1978;30:347–54.CrossRefGoogle ScholarPubMed
Chance, B, Oshino, N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J 1971;122:225–33.CrossRefGoogle ScholarPubMed
Lazarow, P B, Fujiki, Y, Small, G M. Presence of the peroxisomal 22-kDa integral membrane protein in the liver of a person lacking recognizable peroxisomes (Zellweger syndrome). Proc Natl Acad Sci U S A 1986;83:9193–6.CrossRefGoogle Scholar
Lazarow, P B, Small, G M, Santos, M. Zellweger syndrome amniocytes: morphological appearance and a simple sedimentation method for prenatal diagnosis. Pediatr Res 1988;24:63–7.CrossRefGoogle Scholar
Wanders, R J, Waterham, H R. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 2005;67:107–33.CrossRefGoogle ScholarPubMed
Peduto, A, Baumgartner, M R, Verhoeven, N M. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 2004;82:224–30.CrossRefGoogle ScholarPubMed
Yousef, I M, Perwaiz, S, Lamireau, T. Urinary bile acid profile in children with inborn errors of bile acid metabolism and chronic cholestasis; screening technique using Electrospray tandem mass-spectrometry (ES/MS/MS). Med Sci Monit 2003;9:MT21–31.Google Scholar
Moser, A B, Singh, I, Brown, F R I. The cerebro-hepato-renal (Zellweger) syndrome: Increased levels and impaired oxidation of very-long-chain fatty acids, and their use in prenatal diagnosis. N Engl J Med 1984;310:1141–6.CrossRefGoogle Scholar
Danks, D M, Tippett, P, Adams, C. Cerebro-hepato-renal syndrome of Zellweger: A report of eight cases with comments upon the incidence, the liver lesion, and a fault in pipecolic acid metabolism. J Pediatr 1975;86:382–8.CrossRefGoogle Scholar
Poulos, A, Sharp, P, Fellenberg, A J. Cerebro-hepato-renal (Zellweger) syndrome, adrenoleukodystrophy, and Refsum's disease: plasma changes and skin fibroblast phytanic acid oxidase. Hum Genet 1985;70:172–7.CrossRefGoogle ScholarPubMed
Heymans, H S, vd Bosch, H, Schutgens, R B. Deficiency of plasmalogens in the cerebro-hepato-renal (Zellweger) syndrome. Eur J Pediatr 1984;142:10–15.CrossRefGoogle ScholarPubMed
Roscher, A, Molzer, B, Bernheimer, H. The cerebrohepatorenal (Zellweger) syndrome: an improved method for the biochemical diagnosis and its potential value for prenatal detection. Pediatr Res 1985;19:930–3.CrossRefGoogle ScholarPubMed
Eyssen, H, Eggermont, E, Eldere, J. Bile acid abnormalities and the diagnosis of cerebro-hepato-renal syndrome (Zellweger syndrome). Acta Paediatr Scand 1985;74:539–44.CrossRefGoogle Scholar
Wanders, R J, Kos, M, Roest, B. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome. Biochem Biophys Res Commun 1984;123:1054–61.CrossRefGoogle ScholarPubMed
Hoefler, G, Hoefler, S, Watkins, P A. Biochemical abnormalities in rhizomelic chondrodysplasia punctata. J Pediatr 1988;112:726–33.CrossRefGoogle ScholarPubMed
Mcguinness, M C, Moser, A B, Pollthe, B T. Complementation analysis of patients with intact peroxisomes and impaired peroxisomal beta-oxidation. Biochem Med Metab Biol 1993;49:228–42.CrossRefGoogle ScholarPubMed
Tenbrink, H J, Vandenheuvel, C M M, Christensen, E. Diagnosis of peroxisomal disorders by analysis of phytanic and pristanic acids in stored blood spots collected at neonatal screening. Clin Chem 1993;39:1904–6.Google Scholar
Roels, F, Espeel, M, Craemer, D. Liver pathology and immunocytochemistry in congenital peroxisomal diseases: a review. J Inherit Metab Dis 1991;14:853–75.CrossRefGoogle ScholarPubMed
Hoffmann, G F, Charpentier, C, Mayatepek, E. Clinical and biochemical phenotype in 11 patients with mevalonic aciduria. Pediatrics 1993;91:915–21.Google ScholarPubMed
Veldhoven, P P, Meyhi, E, Squires, R H. Fibroblast studies documenting a case of peroxisomal 2-methylacyl-CoA racemase deficiency: possible link between racemase deficiency and malabsorption and vitamin K deficiency. Eur J Clin Invest 2001;31:714–22.CrossRefGoogle ScholarPubMed
Roth, K S. Peroxisomal disease – common ground for pediatrician, cell biologist, biochemist, pathologist, and neurologist. Clin Pediatr (Phila) 1999;38:73–5.CrossRefGoogle ScholarPubMed
Moser, A B, Rasmussen, M, Naidu, S. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr 1995;127:13–22.CrossRefGoogle ScholarPubMed
Moser, H W. Genotype–phenotype correlations in disorders of peroxisome biogenesis. Mol Genet Metab 1999;68:316–27.CrossRefGoogle ScholarPubMed
Steinberg, S J, Elcioglu, N, Slade, C M. Peroxisomal disorders: clinical and biochemical studies in 15 children and prenatal diagnosis in 7 families. Am J Med Genet 1999;85:502–10.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Depreter, M, Espeel, M, Roels, F. Human peroxisomal disorders. Microsc Res Tech 2003;61:203–23.CrossRefGoogle ScholarPubMed
Smith, D W, Opitz, J M, Inhorn, S L. A syndrome of multiple developmental defects including polycystic kidneys and intrahepatic biliary dysgenesis in 2 siblings. J Pediatr 1965;67:617–24.CrossRefGoogle ScholarPubMed
Bove, K E, Daugherty, C C, Tyson, W. Bile acid synthetic defects and liver disease. Pediatr Dev Pathol 2000;3:1–16.CrossRefGoogle ScholarPubMed
Mathis, R K, Watkins, J B, Szczepanik-Van Leeuwen, P. Liver in the cerebro-hepato-renal syndrome: defective bile acid synthesis and abnormal mitochondria. Gastroenterology 1980;79:1311–17.Google ScholarPubMed
Setchell, K D, Bragetti, P, Zimmer-Nechemias, L. Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology 1992;15:198–207.CrossRefGoogle ScholarPubMed
Goez, H, Meiron, D, Horowitz, J. Infantile Refsum disease: Neonatal cholestatic jaundice presentation of a peroxisomal disorder. J Pediat Gastroenterol Nutr 1995;20:98–101.CrossRefGoogle ScholarPubMed
Stokke, O, Skrede, S, Ek, J. Refsum's disease, adrenoleucodystrophy, and the Zellweger syndrome. Scand J Clin Lab Invest 1984;44:463–4.CrossRefGoogle ScholarPubMed
Gatfield, P D, Taller, E, Hinton, G G. Hyperpipecolatemia: a new metabolic disorder associated with neuropathy and hepatomegaly: a case study. Can Med Assoc J 1968;99:1215–33.Google ScholarPubMed
Thomas, G H, Haslam, R H, Batshaw, M L. Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin Genet 1975;8:376–82.CrossRefGoogle ScholarPubMed
Suzuki, Y, Jiang, L L, Souri, M. D-3-hydroxyacyl-CoA dehydratase(D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am J Hum Genet 1997;61:1153–62.CrossRefGoogle ScholarPubMed
Suzuki, Y, Shimozawa, N, Yajima, S. Novel subtype of peroxisomal acyl-CoA oxidase deficiency and bifunctional enzyme deficiency with detectable enzyme protein: identification by means of complementation analysis. Am J Hum Genet 1994;54:36–43.Google ScholarPubMed
Fan, C Y, Pan, J, Chu, R Y. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme a oxidase gene. J Biol Chem 1996;271:24698–710.CrossRefGoogle ScholarPubMed
Chesney, R W, Friedman, A L, Breed, A L. Renal failure with hypercalcemia, renal stones, multiple pathologic fractures, and growth failure. Am J Med Genet 1983;14:169–79.CrossRefGoogle ScholarPubMed
Small, K W, Letson, R, Scheinman, J. Ocular findings in primary hyperoxaluria. Arch Ophthalmol 1990;108:89–93.CrossRefGoogle ScholarPubMed
Coltart, D J, Hudson, R E. Primary oxalosis of the heart: a cause of heart block. Br Heart J 1971;33:315–19.CrossRefGoogle ScholarPubMed
Yendt, E R, Cohanim, M. Response to a physiologic dose of pyridoxine in type I primary hyperoxaluria. N Engl J Med 1985;312:953–7.CrossRefGoogle ScholarPubMed
Milliner, D S, Eickholt, J T, Bergstralh, E J. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med 1994;331:1553–8.CrossRefGoogle ScholarPubMed
Klauwers, J, Wolf, P L, Cohn, R. Failure of renal transplantation in primary oxalosis. JAMA 1969;209:551.CrossRefGoogle ScholarPubMed
Watts, R W, Calne, R Y, Williams, R. Primary hyperoxaluria (type I): attempted treatment by combined hepatic and renal transplantation. Q J Med 1985;57:697–703.Google ScholarPubMed
McDonald, J C, Landreneau, M D, Rohr, M S. Reversal by liver transplantation of the complications of primary hyperoxaluria as well as the metabolic defect. N Engl J Med 1989;321:1100–3.CrossRefGoogle ScholarPubMed
Baethge, B A, Sanusi, I D, Landreneau, M D. Livedo reticularis and peripheral gangrene associated with primary hyperoxaluria. Arthritis Rheum 1988;31:1199–203.CrossRefGoogle ScholarPubMed
Gruessner, R W. Preemptive liver transplantation from a living related donor for primary hyperoxaluria type I. N Engl J Med 1998;338:1924.CrossRefGoogle ScholarPubMed
Walden, U, Boswald, M, Dorr, H G. Primary hyperoxaluria 1: catch up growth and normalization of oxaluria 6 years after hepatorenal transplantation in a prepubertal boy. Eur J Pediatr 1999;158:727–9.CrossRefGoogle Scholar
Danpure, C J, Jennings, P R. Further studies on the activity and subcellular distribution of alanine:glyoxylate aminotransferase in the livers of patients with primary hyperoxaluria type 1. Clin Sci 1988;75:315–22.CrossRefGoogle ScholarPubMed
Danpure, C J, Jennings, P R, Watts, R W. Enzymological diagnosis of primary hyperoxaluria type 1 by measurement of hepatic alanine: glyoxylate aminotransferase activity. Lancet 1987;1:289–91.CrossRefGoogle ScholarPubMed
Danpure, C J, Rumsby, G. Strategies for the prenatal diagnosis of primary hyperoxaluria type 1. Prenat Diagn 1996;16:587–98.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Mancini, J, Philip, N, Chabrol, B. Mevalonic aciduria in 3 siblings: a new recognizable metabolic encephalopathy. Pediatr Neurol 1993;9:243–6.CrossRefGoogle ScholarPubMed
Hinson, D D, Rogers, Z R, Hoffmann, G F. Hematological abnormalities and cholestatic liver disease in two patients with mevalonate kinase deficiency. Am J Med Genet 1998;78:408–12.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
McLean, B N, Allen, J, Ferdinandusse, S. A new defect of peroxisomal function involving pristanic acid: a case report. J Neurol Neurosurg Psychiatry 2002;72:396–9.CrossRefGoogle ScholarPubMed
Setchell, K D, Heubi, J E, Bove, K E. Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 2003;124:217–32.CrossRefGoogle ScholarPubMed
Savolainen, K, Kotti, T J, Schmitz, W. A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 2004.CrossRefGoogle ScholarPubMed
Mayatepek, E, Ferdinandusse, S, Meissner, T. Analysis of cysteinyl leukotrienes and their metabolites in bile of patients with peroxisomal or mitochondrial beta-oxidation defects. Clin Chim Acta 2004;345:89–92.CrossRefGoogle ScholarPubMed
Baumgart, E, Vanhorebeek, I, Grabenbauer, M. Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am J Pathol 2001;159:1477–94.CrossRefGoogle Scholar
Reddy, J K. Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal beta-oxidation, PPARalpha, and steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2001;281:G1333–9.CrossRefGoogle ScholarPubMed
Maeda, K, Kimura, A, Yamato, Y. Oral bile Acid treatment in two Japanese patients with zellweger syndrome. J Pediatr Gastroenterol Nutr 2002;35:227–30.CrossRefGoogle ScholarPubMed
Martinez, M, Vazquez, E, Garcia-Silva, M T. Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am J Clin Nutr 2000;71:376S–85S.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Peroxisomal Diseases
    • By Paul A. Watkins, M.D., Ph.D., Professor, Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, Maryland, Kathleen B. Schwarz, M.D., Professor, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Director, Pediatric Liver Center, Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, Maryland
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.037
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Peroxisomal Diseases
    • By Paul A. Watkins, M.D., Ph.D., Professor, Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, Maryland, Kathleen B. Schwarz, M.D., Professor, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Director, Pediatric Liver Center, Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, Maryland
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.037
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Peroxisomal Diseases
    • By Paul A. Watkins, M.D., Ph.D., Professor, Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, Maryland, Kathleen B. Schwarz, M.D., Professor, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Director, Pediatric Liver Center, Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, Maryland
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.037
Available formats
×