ReferencesBarrett, J.W., Schwab, C., & Süli, E. (2010) Existence and equilibration of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers, preprint 2010.
Chemin, J.-Y. & Masmoudi, N. (2001) About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112.
Constantin, P. (2005) Nonlinear Fokker–Planck Navier–Stokes Systems. Commun. Math. Sci. 3, 531–544.
Constantin, P. (2007) Smoluchowski Navier–Stokes systems, in Contemporary Mathematics 429 G-Q, ChenE., HsuM., Pinsky editors, AMS, Providence, 85–109.
Constantin, P. (2010) The Onsager equation for corpora. Journal of Computational and Theoretical Nanoscience 7 (4), 675–682.
Constantin, P., Fefferman, C., Titi, E., & Zarnescu, A. (2007) Regularity for coupled two-dimensional nonlinear Fokker–Planck and Navier–Stokes systems. Commun. Math. Phys. 270, 789–811.
Constantin, P. & Masmoudi, N. (2008) Global well-posedness for a Smoluchowski equation coupled with Navier–Stokes equations in 2D. Commun. Math. Phys. 278, 179–191.
Constantin, P. & Seregin, G. (2010a) Hölder Continuity of Solutions of 2D Navier–Stokes Equations with Singular Forcing. In Nonlinear partial differential equations and related topics, Amer. Math. Soc. Transl. Ser. 2, 229, Amer. Math. Soc., Providence, Rhode Island, USA
Constantin, P. & Seregin, G. (2010b) Global regularity of solutions of coupled Navier–Stokes equations and nonlinear Fokker–Planck equations. DCDSA 26, 1185–1186.
Constantin, P. & Sun, W. (2012) Remarks on Oldroyd-B and Related Complex Fluid Models. Comm. Math. Sciences, 10, 33–73.
Constantin, P. & Zlatos, A. (2010) On the high intensity limit of interacting corpora. Comm. Math. Sciences 8, 173–186.
Doi, M. & Edwards, S.F. (1998) The Theory of Polymer Dynamics. Oxford University Press, Oxford.
Guillopé, C. & Saut, J.-C. (1990) Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869.
Kupferman, R., Mangoubi, C., & Titi, E. (2008) A Beale–Kato–Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Commun. Math. Sciences 6, 235–256.
LeBris, C. & Lelièvre, T. (2009) Multiscale modelling of complex fluids: a mathematical initiation. In Multiscale modelling and simulation in science. Lect. Notes Comput. Sci. Eng. 66, Springer, Berlin.
Lei, Z. & Zhou, Y. (2005) Global existence of classical solutions for the twodimensional Oldroyd model via the incompressible limit. SIAM. J. Math. Anal. 37, 797–814.
Lei, Z., Masmoudi, N., & Zhou, Y. (2010) Remarks on the blowup criteria for Oldroyd models. J. Diff. Eqns. 248, 328–341.
Lin, F., Liu, C., & Zhang, P. (2005) On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math 58, 1437–1471.
Lin, F., Liu, C., & Zhang, P. (2007) On a micro-macro model for polymeric fluids near equilibrium. Comm. Pure Appl. Math 60, 838–866.
Lin, F., Zhang, P., & Zhang, Z. (2008) On the global existence of smooth solution to the 2D FENE dumbbell model. Commun. Math. Phys. 277, 531–553.
Lions, P.-L. & Masmoudi, N. (2007) Global existence of weak solutions to some micro-macro models. C.R. Acad. Sci. Paris 345, 131–141.
Lions, P.-L. & Masmoudi, N. (2000) Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser.B 21, 131–146.
Masmoudi, N. (2010) Global existence of weak solutions to the FENE dumbbell model of polymeric flows, preprint.
Masmoudi, N., Zhang, P., & Zhang, Z. (2008) Global well-posedness for 2D polymeric fluid models and growth estimate. Phys.D 237, 1663–1675.
Öttinger, H. C. (1996) Stochastic processes in polymeric fluids, Springer-Verlag, Berlin.
Otto, F. & Tzavaras, A.E. (2008) Continuity of velocity gradients in suspensions of rod-like molecules. Comm. Math. Phys. 277, 729–758.
Renardy, M. (1991) An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22, 3131–327.
Thomases, B. & Shelley, M. (2007) Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19.
Thomases, B. (2011) An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow. J. Non-Newtonian Fluid Mech. 166, 1221–1228