Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T04:00:05.547Z Has data issue: false hasContentIssue false

5 - Intravascular-Catheter-Related Infections

Published online by Cambridge University Press:  23 November 2009

Hend A. Hanna
Affiliation:
Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
Issam Raad
Affiliation:
Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

The past few decades have witnessed the advent of many medical advancements, which undoubtedly have aided health care professionals and ameliorated the suffering of many critically ill patients. Among these advancements are intravascular catheters, which have become indispensable for the administration of medications, especially chemotherapeutic agents, intravenous antibiotics, blood products, parenteral nutritional solutions, and fluids; for monitoring critically ill patients haemodynamically; and for providing access for haemodialysis (Flowers et al., 1989). The use of such devices is associated with an increased risk for catheter-related infections, such as local catheter site infection, thrombophlebitis, catheter-related bloodstream infections (CR-BSI), endocarditis, metastatic infections such as osteomyelitis, arthritis, endophthalmitis, and distant organ abscesses (Arnow, Quimosing, and Beach, 1993). Our understanding of the process that leads to CR-BSI has evolved over the years, and now the role of bacterial biofilms in this process is certainly undeniable.

Bacterial biofilms have always existed ubiquitously in the world around us. Costerton and Stewart describe some examples: ‘the slippery coating on a rock in a stream, dental plaque (which most of us confront daily), and the slime that inevitably materializes inside a flower vase after two or three days’ (Costerton and Stewart, 2001). In addressing the medical implications of biofilms as they relate to intravascular-catheter-related infections, we will begin by defining the magnitude of the problem of catheter-related infections, followed by addressing the role of biofilms in the pathogenesis of CR-BSI. Finally, we will review some strategies to prevent biofilm formation on central venous catheters (CVC).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorena, B., Gracia, E., Monzón, M., Leiva, J., Oteiza, C., Pérez, M., Alabart, J. L. and Hernández-Yago, J., (1999). Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. Journal of Antimicrobial Chemotherapy, 44, 43–55CrossRefGoogle ScholarPubMed
Anderl, J. N., Franklin, M. J. and Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44, 1818–1824CrossRefGoogle ScholarPubMed
Arnow, P. M., Quimosing, E. M., and Beach, M., (1993). Consequences of intravascular catheter sepsis. Clinical Infectious Diseases, 16, 778–784CrossRefGoogle ScholarPubMed
Bailey, M. J. (1979). Reduction of catheter-associated sepsis in parenteral nutrition using low-dose intravenous heparin. British Medical Journal, 1, 1671–1673CrossRefGoogle ScholarPubMed
Benson, D. E., Grissom, C. B., Burns, G. L. and Hohammad, S. F., (1994). Magnetic field enhancement of antibiotic activity in biofilm forming Pseudomonas aeruginosa. ASAIO Journal, 40, M371–M376CrossRefGoogle ScholarPubMed
Bouali, A., Robert, R., Tronchin, G., and Senet, J. M., (1987). Characterization of binding of human fibrinogen to the surface of germ-tubes and mycelium of Candida albicans. Journal of General Microbiology, 133, 454–551Google ScholarPubMed
Brooun, A., Liu, S. and Lewis, K., (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilm. Antimicrobial Agents and Chemotherapy, 44, 640–646CrossRefGoogle Scholar
Capdevila, J. A. (1998). Catheter-related infection: an update on diagnosis, treatment and prevention. International Journal of Infectious Diseases, 2, 230–236CrossRefGoogle Scholar
Centers for Disease Control and Prevention. (1999). National Nosocomial Infection Surveillance (NNIS) system report: data summary from January 1990–May 1999. American Journal of Infection Control, 27, 520–532CrossRef
Characklis, W. G. (1990). Biofilm processes. In Biofilms, eds. W. G. Characklis and K. C. Marshall, pp. 195–233. New York: Wiley
Characklis, W. G. and Marshall, K. (1990). Biofilms: a basis for an interdisciplinary approach. In Biofilms, eds. W. G. Characklis and K. C. Marshall, pp. 3–17. New York: Wiley
Clementi, E., Mario, O., Arlet, G., Villers, S., Boudaoud, S. and Falkman, H. (1991). Usefulness of an attachable silver-impregnated cuff for the prevention of catheter-related sepsis (CRS)? In Programs and Abstracts of the 31st Interscience Conference on Antimicrobial Agents and Chemotherapy, September 29–October 2, 1991. Chicago, IL. Washington, DC: American Society for Microbiology, Abstract #460
Cochrane, D. M. G., Brown, M. R. W., Anwar, H., Weller, P. H., Lam, K., and Costerton, J. W., (1988). Antibody response to Pseudomonas aeruginosa surface protein antigens in a rat model of chronic lung infection. Journal of Medical Microbiology, 27, 255–261CrossRefGoogle Scholar
Cooper, G. L. and Hopkins, C. C. (1985). Rapid diagnosis of intravascular catheter-associated infection by direct Gram staining of catheter segments. New England Journal of Medicine, 312, 1142–1147CrossRefGoogle ScholarPubMed
Costerton, J. W., Ellis, B., Lam, K., Johnson, F. and Khoury, A. E. (1994). Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrobial Agents and Chemotherapy, 38, 2803–2809CrossRefGoogle ScholarPubMed
Costerton, J. W., Geesey, G. G. and Cheng, G. K. (1978). How bacteria stick. Scientific American, 238, 86–95CrossRefGoogle ScholarPubMed
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. and Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745CrossRefGoogle ScholarPubMed
Costerton, J. W. and Stewart, P. S. (2001). Battling biofilms. Scientific American, 285, 74–81CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318–1322CrossRefGoogle ScholarPubMed
Darouiche, R. O., Dahir, A., Miller, A. J., Landon, G. C., Raad, I. I. and Musher, D. M. (1994). Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. Journal of Infectious Diseases, 170, 720–723CrossRefGoogle ScholarPubMed
Darouiche, R. O., Raad, I. I., Heard, S. O., Thornby, J. I., Wenker, O. C., Gabrielli, A., Berg, J., Kahrdori, N., Hanna, H., Hachem, R., Harris, R. L. and Mayhall, G. A. (1999). Comparison of two anti-microbial impregnated central venous catheters. New England Journal of Medicine, 340, 1–8CrossRefGoogle Scholar
DeBeer, D., Stoodley, P. and Lewandowski, Z. (1994). Liquid flow in heterogenous biofilms. Biotechical Bioengineering, 44, 636–641CrossRefGoogle Scholar
Donlan, R. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7, 277–281CrossRefGoogle ScholarPubMed
Farr, B. M. (1995). Vascular catheter related infections in cancer patients. Surgical Oncology Clinics of North America, 4, 493–503Google ScholarPubMed
Faubion, W. C., Wesley, J. R., Khalidi, N. and Silva, J. (1986). Total parenteral nutrition catheter sepsis: impact of the team approach. Journal of Parenteral Enteral Nutrition 10, 642–645CrossRefGoogle ScholarPubMed
Fey, P. D., Ulphani, J. S., Götz, F., Heilmann, C., Mack, D. and Rupp, M. E. (1999). Characterization of the relationship between polysaccharide intercellular adhesion and hemagglutination in Staphylococcus epidermidis. Journal of Infectious Diseases, 179, 1561–1564CrossRefGoogle Scholar
Flowers, R. H., Schwenzer, K. J., Kopel, R. F., Fisch, M. J., Tucker, S. I. and Farr, B. M. (1989). Efficacy of an attachable subcutaneous cuff for the prevention of intravascular catheter-related infection. Journal of the American Medical Association, 261, 878–883CrossRefGoogle ScholarPubMed
Gieseke, A., Purkhold, U., Amann, R. and Schamm, A. (2001). Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 67(3), 1351–1362CrossRefGoogle Scholar
Giwercman, B., Jensen, E. T., Hoiby, N., Kharazmi, A. and Costerton, J. W. (1991). Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrobial Agents and Chemotherapy, 35, 1008–1010CrossRefGoogle ScholarPubMed
Gristina, A. G. (1987). Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 237, 1588–1595CrossRefGoogle ScholarPubMed
Groeger, J. S., Lucas, A. B., Coit, D., LaQuaglia, M., Brown, A. E., Turnbull, A. and Exelby, P. (1993a). A prospective randomized evaluation of silver-impregnated subcutaneous cuffs for preventing tunneled chronic venous access catheter infections. Annals of Surgery, 218, 206–210CrossRefGoogle Scholar
Groeger, J. S., Lucas, A. B., Thaler, H. T., Friedlander-Klar, H., Brown, A. E., Kiehn, T. E. and Armstrong, D. (1993b). Infectious morbidity associated with long-term use of venous access devices in patients with cancer. Annals of Internal Medicine, 119, 1168–1174CrossRefGoogle Scholar
Hanna, H., Darouiche, R. and Raad, I. (2001). New approaches for prevention of intravascular catheter-related infections. Infections in Medicine, 18, 38–48Google Scholar
Hawiger, J., Timmons, S., Strong, D. D., Cottrell, B. A., Riley, M. and Doolittle, R. F. (1982). Identification of a region of human fibrinogen interacting with staphylococcal clumping factor. Biochemistry, 21, 1407–1413CrossRefGoogle ScholarPubMed
Heilmann, C., Gerke, C., Perdreau-Remington, F. and Götz, F. (1996a). Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infection and Immunity, 64, 277–282Google Scholar
Heilmann, C., Hussain, M., Peters, G. and Götz, F. (1997). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Molecular Microbiology, 24, 1013–1024CrossRefGoogle ScholarPubMed
Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D. and Götz, F. (1996b). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Molecular Microbiology, 20, 1083–1091CrossRefGoogle Scholar
Herrmann, M., Lai, Q. J., Albrecht, R. M., Mosher, D. F. and Proctor, R. A. (1993). Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. Journal of Infectious Diseases, 167, 312–322CrossRefGoogle ScholarPubMed
Herrmann, M., Suchard, S. J., Boxer, L. A., Waldvogel, F. A. and Lew, P. D. (1991). Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infection and Immunity, 59, 279–288Google ScholarPubMed
Howell, P. B., Walters, P. E., Donowitz, G. R. and Farr, B. M. (1995). Risk factors for infection of tunneled central venous catheters in adult cancer patients. Cancer, 75(6), 1367–13743.0.CO;2-Z>CrossRefGoogle Scholar
Ishida, H., Ishida, Y., Kurosaka, T., Otani, K., Sato, K. and Kobayashi, H. (1998). In-vitro and in-vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicobrial Agents and Chemotherapy, 42, 1641–1645Google ScholarPubMed
Jarvis, W. R., Edwards, J. E., Culver, D. H., Hughes, J. M., Horan, T., Emori, G. G., Banerjee, S., Tolson, J., Henderson, T. and Gaynes, R. P. (1991). Nosocomial infection rates in adult and pediatric intensive care units in the United States. American Journal of Medicine, 91, (Suppl. 3B) 185S–191SCrossRefGoogle ScholarPubMed
Khoury, A. E., Lam, K., Ellis, B., and Costerton, J. W., (1992). Prevention and control of bacterial infections associated with medical devices. ASAIO Journal, 38, M174–M178CrossRefGoogle ScholarPubMed
Kolls, S. and Brown, A. E. (1993). The changing epidemiology of infections at cancer hospitals. Clinical Infectious Diseases, 17, S322–S328CrossRefGoogle Scholar
König, C., Schwank, S. and Blaser, J. (2001). Factors compromising antibiotic activity against biofilms of Staphylococcus epidermidis. European Journal of Clinical Microbiology and Infectious Diseases, 20, 21–26CrossRefGoogle ScholarPubMed
König, C., Simmen, H. P. and Blaser, J. (1993). Effect of pathological changes of pH, pO2 and pCO2 on the activity of antimicrobial agents in vitro. European Journal of Clinical Microbiology and Infectious Diseases, 12, 519–526CrossRefGoogle ScholarPubMed
Kuusela, P. (1978). Fibronectin binds to Staphylococcus aureus. Nature, 276, 718–720CrossRefGoogle ScholarPubMed
Lappin-Scott, H. M. and Bass, C. B. (2001). Biofilm formation: attachment, growth and detachment of microbes from surfaces. American Journal of Infection Control, 29, 250–251CrossRefGoogle ScholarPubMed
Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007CrossRefGoogle ScholarPubMed
Linares, J., Sitges-Serra, A., Garau, J., Perez, J. L. and Martin, R. (1985). Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. Journal of Clinical Microbiology, 21, 357–360Google ScholarPubMed
Lopes, J. D., Reis, Dos M. and Brentani, R. R. (1985). Presence of laminin receptors in Staphylococcus aureus. Science, 229, 275–277CrossRefGoogle ScholarPubMed
Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H. and Laufs, R. (1996). The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1, 6-linked glucosamineoglycan: purification and structural analysis. Journal of Bacteriology, 178, 175–183CrossRefGoogle ScholarPubMed
Mack, D., Nedelmann, M., Krokotsch, A., Schwarzkopf, A., Heesemann, J. and Laufs, R. (1994). Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesion. Infection and Immunology, 62, 3244–3253Google Scholar
Mack, D., Siemssen, N. and Laufs, R. (1992). Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infection and Immunology, 60, 2048–2057Google Scholar
Maira-Litrán, T., Allison, D. G. and Gilbert, P. (2000). An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. Journal of Antimicrobial Chemotherapy, 45, 789–795CrossRefGoogle ScholarPubMed
Maki, D. G. (1989). Pathogenesis, prevention, and management of infections due to intravascular devices used for infusion therapy. In Infections Associated with Indwelling Medical Devices, eds. S. L. Bisno and F. A. Waldvogal, pp. 161–177. Washington, DC: American Society for Microbiology
Maki, D. G. and Band, J. D. (1981). A comparative study of polyantibiotic and iodophor ointments in prevention of vascular catheter-related infection. American Journal of Medicine, 70, 739–744CrossRefGoogle ScholarPubMed
Maki, D. G. and Mermel, L. A. (1998). Infections due to infusion therapy. In Hospital Infections, ed. J. V. Bennett and P. S. Brachman, pp. 689–724. Philadelphia, PA: Lippincott-Raven
Maki, D. G. and Ringer, M. (1987). Evaluation of dressing regimens for prevention of infection with peripheral intravenous catheters gauze, a transparent polyurethane dressing, and an iodophor-transparent dressing. Journal of the American Medical Society, 258, 2396–2403Google ScholarPubMed
Maki, D. G., Ringer, M. and Alvarado, C. J. (1991). Prospective randomized trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet, 338, 339–343CrossRefGoogle ScholarPubMed
Maki, D. G., Stolz, S. M., Wheeler, S. and Mermel, L. A. (1997). Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: a randomized controlled trial. Annals of Internal Medicine, 127, 257–266CrossRefGoogle ScholarPubMed
Maki, D. G., Weise, C. E. and Sarafin, H. W. (1977). A semiquantitative culture method for identifying intravenous catheter-related infections. New England Journal of Medicine, 296, 1305–1309CrossRefGoogle Scholar
Mermel, L. A. (2000a). Prevention of intravascular catheter-related infections. Annals of Internal Medicine, 132, 391–402CrossRefGoogle Scholar
Mermel, L. A. (2000b). Correction: catheter-related bloodstream infections. Annals of Internal Medicine, 133, 395Google Scholar
Mermel, L. A., Farr, B. M., Sherertz, R. J., Raad, I. I, O'Grady, N., Harris, J. A. S. and Craven, D. E. (2001). Guidelines for the management of intravascular catheter-related infections. Clinical Infectious Diseases, 32, 1249–1272CrossRefGoogle ScholarPubMed
Nelson, D. B., Kien, C. L., Mohr, B., Frank, S. and Davis, S. D. (1986). Dressing changes by specialized personnel reduce infection rates in patients receiving central venous parenteral nutrition. Journal of Parenteral Enteral Nutrition, 10, 220–222CrossRefGoogle ScholarPubMed
Raad, I. (1998). Intravascular-catheter-related infections. Lancet, 351, 893–898CrossRefGoogle ScholarPubMed
Raad, I., Buzaid, A., Rhyne, J., Hachem, R., Darouiche, R., Safar, H., Albitar, M. and Sherertz, R. (1997). Minocycline and ethlenediaminetetraacetate for the prevention of recurrent vascular catheter infections. Clinical Infectious Diseases, 25, 149–151CrossRefGoogle ScholarPubMed
Raad, I., Darouiche, R. O., Hachem, R., Abi-Said, D., Safar, H., Darnule, T., Mansouri, M. and Morck, D. (1998). Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin. Critical Care in Medicine, 26, 219–224CrossRefGoogle ScholarPubMed
Raad, I., Costerton, W., Sabharwal, U., Sacilowski, M., Anaissie, E. and Bodey, G. P. (1993). Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. Journal of Infectious Diseases, 168, 400–407CrossRefGoogle ScholarPubMed
Raad, I., Hachem, R., Zermeno, A., Dumo, M. and Bodey, G. P. (1996a). In vitro antimicrobial efficacy of silver iontophoretic catheter. Biomaterials, 17, 1055–1059CrossRefGoogle Scholar
Raad, I., Hachem, R., Zermeno, A., Stephens, L. C. and Bodey, G. P. (1996b). Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. Journal of Infectious Diseases, 173, 495–498CrossRefGoogle Scholar
Raad, I. I., and Hanna, H. (1999). Nosocomial infections related to use of intravascular devices inserted for long-term vascular access. In Hospital Epidemiology and Infection Control, ed. C. G. Mayhall, pp. 165–171. Philadelphia, PA: Lippincott Williams & Wilkins
Raad, I. I., Hohn, D. C., Gilbreath, B., Suleiman, N., Hill, L. A., Bruso, P. A., Marts, K., Mansfield, P. F. and Bodey, G. P. (1994). Prevention of central venous catheter-related infections using maximal sterile barrier precautions during insertion. Infection Control and Hospital Epidemiology, 15, 231–238CrossRefGoogle ScholarPubMed
Rachid, S., Ohlsen, K., Wite, W., Hacker, J. and Ziebuhr, W. (2000). Effect of subinhibitory concentrations on polysaccharide intercellular adhesion expression in biofilm-forming Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 44, 3357–3363CrossRefGoogle Scholar
Rupp, M. E., Ulphani, J. S., Fey, P. D. and Mack, D. (1999a). Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesion/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infection and Immunity, 67, 2656–2659Google Scholar
Rupp, M. E., Fey, P. D., Heilmann, C. and Götz, F. (2001). Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. Journal of Infectious Diseases, 183, 1038–1042CrossRefGoogle Scholar
Rupp, M. E., Ulphani, J. S., Fey, P. D., Bartscht, K. and Mack, D. (1999b). Characterization of the importance of polysacchride intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infection and Immunity, 67, 2627–2632Google Scholar
Saint, S., Veenstra, D. L. and Lipsky, B. A. (2000). The clinical and economic consequences of nosocomial central venous catheter-related infection: are antimicrobial catheters useful? Infection Control and Hospital Epidemiology, 21, 375–380CrossRefGoogle ScholarPubMed
Salzman, M. B., Isenberg, H. D., Shapiro, J. F., Lipsitz, P. J. and Rubin, L. G. (1993). A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. Journal of Infectious Diseases, 167, 487–490CrossRefGoogle ScholarPubMed
Schwartz, C., Henrickson, K. J., Roghmann, K. and Powell, K. (1990). Prevention of bacteremia attributed to luminal colonization of tunneled central venous catheters with vancomycin-susceptible organisms. Journal of Clinical Oncology, 8, 591–597CrossRefGoogle ScholarPubMed
Stewart, P. S. (1996). Theoretical aspects of antibiotic diffusion into microbial biofilm. Antimicrobial Agents and Chemotherapy, 40, 2517–2522Google Scholar
Stiges-Serra, A., Linares, J., Perez, J. L., Jaurrieta, E. and Lorente, L. (1985). A randomized trial on the effect of tubing changes on hub contamination and catheter sepsis during parenteral nutrition. Journal of Parenteral Enteral Nutrition, 9, 322–325CrossRefGoogle Scholar
Stiges-Serra, A., Puig, P., Linares, J., Perez, J. L., Farrero, N., Jaurrieta, E. and Garau, J. (1984). Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. Journal of Parenteral Enteral Nutrition, 8, 668–672CrossRefGoogle Scholar
Suci, P. A., Mittelman, M. W., Yu, F. P. and Geesey, G. G. (1994). Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilm. Antimicrobial Agents and Chemotherapy, 38, 2125–2133CrossRefGoogle Scholar
Teichberg, S., Farber, B. F., Wolff, A. G. and Roberts, B. (1993). Salicylic acid decreases extracellular biofilm production by Staphylococcus epidermidis electron microscopic analysis. Journal of Infectious Diseases, 167, 1501–1503CrossRefGoogle ScholarPubMed
Timmerman, C. P., Fleer, A., Besnier, J. M., Graff, L., Cremers, F. and Verhoef, J. (1991). Characterization of a proteinacious adhesion of Staphylococcus epidermidis which mediates attachment to polystyrene. Infection and Immunity, 59, 4187–4192Google Scholar
Timsit, J. F., Bruneel, F., Cheval, C., Mamzer, M. F., Garrouste-Oregeas, M., Wolff, M., Misset, B., Chevret, S., Regnier, B. and Carlet, J. (1999). Use of tunneled femoral catheters to prevent catheter-related infection: a randomized, controlled trial. Annals of Internal Medicine, 130, 729–735CrossRefGoogle ScholarPubMed
Vaudaux, P., Pittet, D., Haeberli, A., Huggler, E., Nydegger, U. E. and Lew, D. P. (1989). Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. Journal of Infectious Diseases, 160, 865–875CrossRefGoogle ScholarPubMed
Veenstra, G. J., Cremers, F. M., Dijk, H. and Fleer, A. (1996). Ultrastructural organization and regulation of a biomaterial adhesion of Staphylococcus epidermidis. Journal of Bacteriology, 178, 537–541CrossRefGoogle ScholarPubMed
Veenstra, D. L., Saint, S., Saha, S., Lumley, T. and Sullivan, S. D. (1999a). Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta analysis. Journal of the American Medical Association, 281, 261–267CrossRefGoogle Scholar
Veenstra, D. L., Saint, S. and Sullivan, S. D. (1999b). Cost-effectiveness of antiseptic-impregnated central venous catheters for the prevention of catheter-related bloodstream infection. Journal of the American Medical Association, 28, 554–560CrossRefGoogle Scholar
Wentland, E. J., Stewart, P. S., Huang, C. T. and McFeters, G. A. (1996). Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnological Programs, 12, 316–321Google ScholarPubMed
Wenzel, R. P. and Edmond, M. B. (2001). The impact of hospital-acquired bloodstream infections. Emerging Infectious Diseases, 7, 174–177CrossRefGoogle ScholarPubMed
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teltzel, G. M., Lory, S. and Greenberg, E. p. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Intravascular-Catheter-Related Infections
    • By Hend A. Hanna, Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA, Issam Raad, Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Intravascular-Catheter-Related Infections
    • By Hend A. Hanna, Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA, Issam Raad, Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Intravascular-Catheter-Related Infections
    • By Hend A. Hanna, Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA, Issam Raad, Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.006
Available formats
×