Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T23:02:51.670Z Has data issue: false hasContentIssue false

Section III - Conclusions and Future Directions

Published online by Cambridge University Press:  24 September 2020

Darius Ebrahimi-Fakhari
Affiliation:
Harvard Medical School
Phillip L. Pearl
Affiliation:
Harvard Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Movement Disorders and Inherited Metabolic Disorders
Recognition, Understanding, Improving Outcomes
, pp. 365 - 412
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Goodwin, S, McPherson, JD, McCombie, WR. Coming of age: Ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.CrossRefGoogle ScholarPubMed
Hardwick, SA, Deveson, IW, Mercer, TR. Reference standards for next-generation sequencing. Nat Rev Genet. 2017;18(8):473–84.CrossRefGoogle ScholarPubMed
Roy, S, Coldren, C, Karunamurthy, A, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: A joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn. 2018;20(1):427.CrossRefGoogle ScholarPubMed
Olgiati, S, Quadri, M, Bonifati, V. Genetics of movement disorders in the next-generation sequencing era. Mov Disord. 2016;31(4):458–70.CrossRefGoogle ScholarPubMed
Stranneheim, H, Engvall, M, Naess, K, et al. Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism. BMC Genomics. 2014;15:1090.CrossRefGoogle ScholarPubMed
Ku, CS, Naidoo, N, Pawitan, Y. Revisiting Mendelian disorders through exome sequencing. Hum Genet. 2011;129(4):351–70.CrossRefGoogle ScholarPubMed
Retterer, K, Juusola, J, Cho, MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696704.CrossRefGoogle ScholarPubMed
Zech, M, Boesch, S, Jochim, A, et al. Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Mov Disord. 2017;32(4):549–59.Google Scholar
Bettencourt, C, Lopez-Sendon, JL, Garcia-Caldentey, J, et al. Exome sequencing is a useful diagnostic tool for complicated forms of hereditary spastic paraplegia. Clin Genet. 2014;85(2):154–8.CrossRefGoogle ScholarPubMed
Sikkema-Raddatz, B, Johansson, LF, de Boer, EN, et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat. 2013;34(7):1035–42.Google Scholar
Reale, C, Panteghini, C, Carecchio, M, Garavaglia, B. The relevance of gene panels in movement disorders diagnosis: A lab perspective. Eur J Paediatr Neurol. 2018;22(2):285–91.Google Scholar
Reid, ES, Papandreou, A, Drury, S, et al. Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes. Brain. 2016;139(11):2844–54.CrossRefGoogle ScholarPubMed
Christensen, CK, Walsh, L. Movement disorders and neurometabolic diseases. Semin Pediatr Neurol. 2018;25:8291.Google Scholar
Yubero, D, Brandi, N, Ormazabal, A, et al. Targeted next generation sequencing in patients with inborn errors of metabolism. PLoS One. 2016;11(5):e0156359.Google Scholar
Tomas, J, Duraes, J, Lacerda, L, Macario, MC. Adolescent-onset Krabbe disease with an initial diagnosis of multiple sclerosis and a novel mutation. BMJ Case Rep. 2015;2015.Google Scholar
Vanderver, A, Prust, M, Tonduti, D, et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab. 2015;114(4):494500.CrossRefGoogle ScholarPubMed
Boemer, F, Fasquelle, C, d’Otreppe, S, et al. A next-generation newborn screening pilot study: NGS on dried blood spots detects causal mutations in patients with inherited metabolic diseases. Sci Rep. 2017;7(1):17641.CrossRefGoogle ScholarPubMed
Krebs, CE, Paisan-Ruiz, C. The use of next-generation sequencing in movement disorders. Front Genet. 2012;3:75.CrossRefGoogle ScholarPubMed
Fuchs, T, Ozelius, LJ. Genetics in dystonia: An update. Curr Neurol Neurosci Rep. 2013;13(12):410.Google Scholar
Moreno-De-Luca, A, Ledbetter, DH, Martin, CL. Genetic [corrected] insights into the causes and classification of [corrected] cerebral palsies. Lancet Neurol. 2012;11(3):283–92.Google Scholar
Filla, A, De Michele, G. Overview of autosomal recessive ataxias. Handb Clin Neurol. 2012;103:265–74.Google Scholar
Jansen, IE, Ye, H, Heetveld, S, et al. Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol. 2017;18(1):22.Google Scholar
Wijemanne, S, Jankovic, J. Dopa-responsive dystonia: Clinical and genetic heterogeneity. Nature Reviews Neurology. 2015;11:414.CrossRefGoogle ScholarPubMed
Malek, N, Fletcher, N, Newman, E. Diagnosing dopamine-responsive dystonias. Pract Neurol. 2015;15(5):340–5.Google Scholar
Jan, MM. Misdiagnoses in children with dopa-responsive dystonia. Pediatr Neurol. 2004;31(4):298303.Google Scholar
Charlesworth, G, Mohire, MD, Schneider, SA, et al. Ataxia telangiectasia presenting as dopa-responsive cervical dystonia. Neurology. 2013;81(13):1148–51.CrossRefGoogle ScholarPubMed
Wijemanne, S, Shulman, JM, Jimenez-Shahed, J, Curry, D, Jankovic, J. SPG11 mutations associated with a complex phenotype resembling dopa-responsive dystonia. Mov Disord Clin Pract. 2015;2(2):149–54.Google Scholar
Wilder-Smith, E, Tan, EK, Law, HY, et al. Spinocerebellar ataxia type 3 presenting as an L-dopa responsive dystonia phenotype in a Chinese family. J Neurol Sci. 2003; 213 (1–2): 25–8.Google Scholar
van Egmond, ME, Kuiper, A, Eggink, H, et al. Dystonia in children and adolescents: A systematic review and a new diagnostic algorithm. J Neurol Neurosurg Psychiatry. 2015;86(7):774–81.Google Scholar
Kim, R, Jeon, B, Lee, WW. A systematic review of treatment outcome in patients with dopa-responsive dystonia (DRD) and DRD-plus. Mov Disord Clin Pract. 2016;3(5):435–42.CrossRefGoogle ScholarPubMed
Di Meo, I, Tiranti, V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol. 2018;22(2):272–84.Google Scholar
Keogh, MJ, Chinnery, PF. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin Pediatr Neurol. 2012;19(2):51–6.CrossRefGoogle ScholarPubMed
Bettencourt, C, Forabosco, P, Wiethoff, S, et al. Gene co-expression networks shed light into diseases of brain iron accumulation. Neurobiol Dis. 2016;87:5968.CrossRefGoogle ScholarPubMed
Bandmann, O, Weiss, KH, Kaler, SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13.Google Scholar
Coffey, AJ, Durkie, M, Hague, S, et al. A genetic study of Wilson’s disease in the United Kingdom. Brain. 2013;136(Pt 5):1476–87.Google Scholar
Collet, C, Laplanche, JL, Page, J, et al. High genetic carrier frequency of Wilson’s disease in France: Discrepancies with clinical prevalence. BMC Med Genet. 2018;19(1):143.Google Scholar
Gao, J, Brackley, S, Mann, JP. The global prevalence of Wilson disease from next-generation sequencing data. Genet Med. 2019; 21(5):1155–63.Google Scholar
Kluska, A, Kulecka, M, Litwin, T, et al. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson’s disease phenotype. Liver Int. 2019;39(1):177–86.Google Scholar
Komlosi, K, Sólyom, A, Beck, M. The role of next-generation sequencing in the diagnosis of lysosomal storage disorders. J Inborn Error Metab Screen. 2016;4:2326409816669376.CrossRefGoogle Scholar
Wang, N, Zhang, Y, Gedvilaite, E, et al. Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology. Hum Mutat. 2017;38(11):1491–9.Google Scholar
Di Fruscio, G, Schulz, A, De Cegli, R, et al. Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy–lysosomal pathway. Autophagy. 2015;11(6):928–38.Google Scholar
Giugliani, R, Brusius-Facchin, AC, Pasqualim, G, et al. Current molecular genetics strategies for the diagnosis of lysosomal storage disorders. Expert Rev Mol Diagn. 2016;16(1):113–23.Google Scholar
Dinwiddie, DL, Smith, LD, Miller, NA, et al. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics. 2013;102(3):148–56.CrossRefGoogle ScholarPubMed
Gerards, M, Sallevelt, SC, Smeets, HJ. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 2016;117(3):300–12.Google Scholar
Marelli, C, Lamari, F, Rainteau, D, et al. Plasma oxysterols: Biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain. 2018;141(1):7284.Google Scholar
Schols, L, Rattay, TW, Martus, P, et al. Hereditary spastic paraplegia type 5: Natural history, biomarkers and a randomized controlled trial. Brain. 2017;140(12):3112–27.Google Scholar

References

Thomas, M, Hayflick, SJ, Jankovic, J. Clinical heterogeneity of neurodegeneration with brain iron accumulation (Hallervorden–Spatz syndrome) and pantothenate kinase-associated neurodegeneration. Mov Disord. 2004;19(1):3642.Google Scholar
Cif, L, Ruge, D, Gonzalez, V, et al. The influence of deep brain stimulation intensity and duration on symptoms evolution in an OFF stimulation dystonia study. Brain Stimul. 2013;6(4):500–5.Google Scholar
Shields, DC, Sharma, N, Gale, JT, Eskandar, EN. Pallidal stimulation for dystonia in pantothenate kinase-associated neurodegeneration. Pediatr Neurol. 2007;37(6):442–5.Google Scholar
Mariotti, P, Fasano, A, Contarino, MF, et al. Management of status dystonicus: Our experience and review of the literature. Mov Disord. 2007;22(7):963–8.Google Scholar
Taira, T, Kobayashi, T, Hori, T. Disappearance of self-mutilating behavior in a patient with Lesch–Nyhan syndrome after bilateral chronic stimulation of the globus pallidus internus. Case report. J Neurosurg. 2003;98(2):414-6.Google Scholar
Timmermann, L, Pauls, KA, Wieland, K, et al. Dystonia in neurodegeneration with brain iron accumulation: Outcome of bilateral pallidal stimulation. Brain. 2010;133(Pt 3):701-12.Google Scholar
Kefalopoulou, Z, Zrinzo, L, Aviles-Olmos, I, et al. Deep brain stimulation as a treatment for chorea-acanthocytosis. J Neurol. 2013;260(1):303–5.CrossRefGoogle ScholarPubMed
Ruiz, PJ, Ayerbe, J, Bader, B, et al. Deep brain stimulation in chorea acanthocytosis. Mov Disord. 2009;24(10):1546–7.Google ScholarPubMed
Fujimoto, Y, Isozaki, E, Yokochi, F, et al. A case of chorea-acanthocytosis successfully treated with posteroventral pallidotomy. Rinsho Shinkeigaku. 1997;37(10):891–4.Google Scholar
Monbaliu, E, Himmelmann, K, Lin, JP, et al. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol. 2017;16(9):741–9.CrossRefGoogle ScholarPubMed
Sidiropoulos, C, Hutchison, W, Mestre, T, et al. Bilateral pallidal stimulation for Wilson’s disease. Mov Disord. 2013;28(9):1292–5.Google Scholar
Darling, A, Tello, C, Marti, MJ, et al. Clinical rating scale for pantothenate kinase-associated neurodegeneration: A pilot study. Mov Disord. 2017;32(11):1620–30.Google Scholar
Gimeno, H, Tustin, K, Selway, R, Lin, JP. Beyond the Burke–Fahn–Marsden Dystonia Rating Scale: Deep brain stimulation in childhood secondary dystonia. Eur J Paediatr Neurol. 2012;16(5):501–8.Google Scholar
Tsering, D, Tochen, L, Lavenstein, B, et al. Considerations in deep brain stimulation (DBS) for pediatric secondary dystonia. Childs Nerv Syst. 2017;33(4):631–7.Google Scholar
Air, EL, Ostrem, JL, Sanger, TD, Starr, PA. Deep brain stimulation in children: Experience and technical pearls. J Neurosurg Pediatr. 2011;8(6):566–74.Google Scholar
Vayssiere, N, Hemm, S, Zanca, M, et al. Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg. 2000;93(5):784–90.Google Scholar
Umemura, A, Jaggi, JL, Dolinskas, CA, Stern, MB, Baltuch, GH. Pallidal deep brain stimulation for longstanding severe generalized dystonia in Hallervorden–Spatz syndrome. Case report. J Neurosurg. 2004;100(4):706–9.Google Scholar
Grandas, F, Fernandez-Carballal, C, Guzman-de-Villoria, J, Ampuero, I. Treatment of a dystonic storm with pallidal stimulation in a patient with PANK2 mutation. Mov Disord. 2011;26(5):921–2.Google Scholar
Starr, PA, Markun, LC, Larson, PS, et al. Interventional MRI-guided deep brain stimulation in pediatric dystonia: First experience with the ClearPoint system. J Neurosurg Pediatr. 2014;14(4):400–8.Google Scholar
Lumsden, DE, Ashmore, J, Charles-Edwards, G, et al. Observation and modeling of deep brain stimulation electrode depth in the pallidal target of the developing brain. World Neurosurg. 2015;83(4):438–46.CrossRefGoogle ScholarPubMed
Chakraborti, S, Hasegawa, H, Lumsden, DE, et al. Bilateral subthalamic nucleus deep brain stimulation for refractory total body dystonia secondary to metabolic autopallidotomy in a 4-year-old boy with infantile methylmalonic acidemia: Case report. J Neurosurg Pediatr. 2013;12(4):374–9.CrossRefGoogle Scholar
Pena, C, Bowsher, K, Samuels-Reid, J. FDA-approved neurologic devices intended for use in infants, children, and adolescents. Neurology. 2004;63(7):1163–7.CrossRefGoogle ScholarPubMed
Krause, M, Fogel, W, Tronnier, V, et al. Long-term benefit to pallidal deep brain stimulation in a case of dystonia secondary to pantothenate kinase-associated neurodegeneration. Mov Disord. 2006;21(12):2255–7.Google Scholar
Johans, SJ, Swong, KN, Hofler, RC, Anderson, DE. A stepwise approach: Decreasing infection in deep brain stimulation for childhood dystonic cerebral palsy. J Child Neurol. 2017;32(10):871–5.Google Scholar
Kaminska, M, Perides, S, Lumsden, DE, et al. Complications of deep brain stimulation (DBS) for dystonia in children: The challenges and 10 year experience in a large paediatric cohort. Eur J Paediatr Neurol. 2017;21(1):168–75.Google Scholar
Yianni, J, Nandi, D, Shad, A, et al. Increased risk of lead fracture and migration in dystonia compared with other movement disorders following deep brain stimulation. J Clin Neurosci. 2004;11(3):243–5.Google Scholar
Lumsden, DE, Ashmore, J, Charles-Edwards, G, et al. Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia. Acta Neurochir (Wien). 2013;155(5):823–36.CrossRefGoogle ScholarPubMed
Yianni, J, Nandi, D, Ch, M, et al. Failure of chronic pallidal stimulation in dystonic patients is a medical emergency. Neuromodulation. 2004;7(1):912.Google Scholar
Austin, A, Lin, JP, Selway, R, Ashkan, K, Owen, T. What parents think and feel about deep brain stimulation in paediatric secondary dystonia including cerebral palsy: A qualitative study of parental decision-making. Eur J Paediatr Neurol. 2017;21(1):185–92.Google Scholar
Zhou, B, Westaway, SK, Levinson, B, et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat Genet. 2001;28(4):345–9.CrossRefGoogle ScholarPubMed
Hayflick, SJ, Westaway, SK, Levinson, B, et al. Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N Engl J Med. 2003;348(1):3340.Google Scholar
Gordon, N. Pantothenate kinase-associated neurodegeneration (Hallervorden–Spatz syndrome). Eur J Paediatr Neurol. 2002;6(5):243–7.CrossRefGoogle ScholarPubMed
Sethi, KD, Adams, RJ, Loring, DW, el Gammal, T. Hallervorden–Spatz syndrome: Clinical and magnetic resonance imaging correlations. Ann Neurol. 1988;24(5):692–4.Google Scholar
Savoiardo, M, Halliday, WC, Nardocci, N, et al. Hallervorden–Spatz disease: MR and pathologic findings. AJNR Am J Neuroradiol. 1993;14(1):155–62.Google Scholar
Gregory, A, Hayflick, SJ. Pantothenate kinase-associated neurodegeneration. GeneReviews®. 2002;Aug 13 (updated Aug 3 2017).Google Scholar
Albright, AL, Barry, MJ, Fasick, P, Barron, W, Shultz, B. Continuous intrathecal baclofen infusion for symptomatic generalized dystonia. Neurosurgery. 1996;38(5):934–8; discussion 8-9.CrossRefGoogle ScholarPubMed
Justesen, CR, Penn, RD, Kroin, JS, Egel, RT. Stereotactic pallidotomy in a child with Hallervorden–Spatz disease. Case report. J Neurosurg. 1999;90(3):551–4.Google Scholar
Tsukamoto, H, Inui, K, Taniike, M, et al. A case of Hallervorden–Spatz disease: Progressive and intractable dystonia controlled by bilateral thalamotomy. Brain Dev. 1992;14(4):269–72.Google Scholar
Balas, I, Kovacs, N, Hollody, K. Staged bilateral stereotactic pallidothalamotomy for life-threatening dystonia in a child with Hallervorden–Spatz disease. Mov Disord. 2006;21(1):82–5.CrossRefGoogle Scholar
De Vloo, P, Lee, DJ, Dallapiazza, RF, et al. Deep brain stimulation for pantothenate kinase-associated neurodegeneration: A meta-analysis. Mov Disord. 2019;34(2):264–73.Google Scholar
Vidailhet, M, Pollak, P. Deep brain stimulation for dystonia: Make the lame walk. Ann Neurol. 2005;57(5):613–4.Google Scholar
Liu, Z, Liu, Y, Yang, Y, et al. Subthalamic nuclei stimulation in patients with pantothenate kinase-associated neurodegeneration (PKAN). Neuromodulation. 2017;20(5):484–91.Google Scholar
Detante, O, Vercueil, L, Krack, P, Off-period dystonia in Parkinson’s disease but not generalized dystonia is improved by high-frequency stimulation of the subthalamic nucleus. Adv Neurol. 2004;94:309–14.Google Scholar
Holloway, KL, Baron, MS, Brown, R, et al. Deep brain stimulation for dystonia: A meta-analysis. Neuromodulation. 2006;9(4):253–61.Google Scholar
Hinkelbein, J, Kalenka, A, Alb, M. Anesthesia for patients with pantothenate-kinase-associated neurodegeneration (Hallervorden–Spatz disease): A literature review. Acta Neuropsychiatr. 2006; 18 (3-4): 168–72.Google Scholar
McClelland, VM, Valentin, A, Rey, HG, et al. Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children with dystonia. J Neurol Neurosurg Psychiatry. 2016;87(9):958–67.Google Scholar
Valentin, A, Selway, R, Lin, JP, et al. Comparison of micro-electrode recordings from globus pallidus internus (GPi) in children with severe dystonia from NBIA1 and other syndromes: Recordings under general anesthesia (abstract). Mov Disord. 2008;May 15;23(S1):S382.Google Scholar
Lim, BC, Ki, CS, Cho, A, et al. Pantothenate kinase-associated neurodegeneration in Korea: Recurrent R440P mutation in PANK2 and outcome of deep brain stimulation. Eur J Neurol. 2012;19(4):556–61.CrossRefGoogle ScholarPubMed
Vasques, X, Cif, L, Gonzalez, V, Nicholson, C, Coubes, P. Factors predicting improvement in primary generalized dystonia treated by pallidal deep brain stimulation. Mov Disord. 2009;24(6):846–53.Google Scholar
Castelnau, P, Cif, L, Valente, EM, et al. Pallidal stimulation improves pantothenate kinase-associated neurodegeneration. Ann Neurol. 2005;57(5):738–41.Google Scholar
Lumsden, DE, Kaminska, M, Gimeno, H, et al. Proportion of life lived with dystonia inversely correlates with response to pallidal deep brain stimulation in both primary and secondary childhood dystonia. Dev Med Child Neurol. 2013;55(6):567–74.Google Scholar
Adamovicova, M, Jech, R, Urgosik, D, Spackova, N, Krepelova, A. Pallidal stimulation in siblings with pantothenate kinase-associated neurodegeneration: Four-year follow-up. Mov Disord. 2011;26(1):184–7.Google Scholar
Vercueil, L, Pollak, P, Fraix, V, et al. Deep brain stimulation in the treatment of severe dystonia. J Neurol. 2001;248(8):695700.CrossRefGoogle ScholarPubMed
Isaac, C, Wright, I, Bhattacharyya, D, Baxter, P, Rowe, J. Pallidal stimulation for pantothenate kinase-associated neurodegeneration dystonia. Arch Dis Child. 2008;93(3):239–40.Google Scholar
Muckschel, M, Smitka, M, Hermann, A, von der Hagen, M, Beste, C. Deep brain stimulation in the globus pallidus compensates response inhibition deficits: Evidence from pantothenate kinase-associated neurodegeneration. Brain Struct Funct. 2016;221(4):2251–7.Google Scholar
Mahoney, R, Selway, R, Lin, JP. Cognitive functioning in children with pantothenate-kinase-associated neurodegeneration undergoing deep brain stimulation. Dev Med Child Neurol. 2011;53(3):275–9.Google Scholar
Tierney, TS, Lozano, AM. Surgical treatment for secondary dystonia. Mov Disord. 2012;27(13):1598–605.Google Scholar
Koyama, M, Yagishita, A. Pantothenate kinase-associated neurodegeneration with increased lentiform nuclei cerebral blood flow. AJNR Am J Neuroradiol. 2006;27(1):212–3.Google Scholar
Hogarth, P, Kurian, MA, Gregory, A, et al. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab. 2017;120(3):278–87.Google Scholar
Miquel, M, Spampinato, U, Latxague, C, et al. Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. PLoS One. 2013;8(11):e79241.Google Scholar
Burbaud, P, Vital, A, Rougier, A, et al. Minimal tissue damage after stimulation of the motor thalamus in a case of chorea-acanthocytosis. Neurology. 2002;59(12):1982–4.CrossRefGoogle Scholar
Fernandez-Pajarin, G, Sesar, A, Ares, B, et al. Deep brain bilateral pallidal stimulation in chorea-acanthocytosis caused by a homozygous VPS13A mutation. Eur J Neurol. 2016;23(1):e45.Google Scholar
Edwards, TC, Zrinzo, L, Limousin, P, Foltynie, T. Deep brain stimulation in the treatment of chorea. Mov Disord. 2012;27(3):357–63.Google Scholar
Dobson-Stone, C, Velayos-Baeza, A, Filippone, LA, et al. Chorein detection for the diagnosis of chorea-acanthocytosis. Ann Neurol. 2004;56(2):299302.Google Scholar
Rampoldi, L, Dobson-Stone, C, Rubio, JP, et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet. 2001;28(2):119–20.Google Scholar
Wihl, G, Volkmann, J, Allert, N, et al. Deep brain stimulation of the internal pallidum did not improve chorea in a patient with neuro-acanthocytosis. Mov Disord. 2001;16(3):572–5.Google Scholar
Nakano, N, Miyauchi, M, Nakanishi, K, et al. Successful combination of pallidal and thalamic stimulation for intractable involuntary movements in patients with neuroacanthocytosis. World Neurosurg. 2015;84(4):1177e17.CrossRefGoogle ScholarPubMed
Syeda, S, Bharadwaj, S. Is dexmedetomidine a miracle drug for sedation in patients with neuroacanthocytosis with involuntary movements? J Neurosurg Anesthesiol. 2018;30(4):382–3.Google Scholar
Lim, TT, Fernandez, HH, Cooper, S, Wilson, KM, Machado, AG. Successful deep brain stimulation surgery with intraoperative magnetic resonance imaging on a difficult neuroacanthocytosis case: Case report. Neurosurgery. 2013;73(1):E184–7; discussion E8.Google Scholar
Shin, H, Ki, CS, Cho, AR, et al. Globus pallidus interna deep brain stimulation improves chorea and functional status in a patient with chorea-acanthocytosis. Stereotact Funct Neurosurg. 2012;90(4):273–7.Google Scholar
Smith, KM, Spindler, MA. Uncommon applications of deep brain stimulation in hyperkinetic movement disorders. Tremor Other Hyperkinet Mov (NY). 2015;5:278.Google Scholar
Machado, A, Haber, S, Sears, N, et al. Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients. Clin Neurophysiol. 2009;120(11):1941–8.Google Scholar
Guehl, D, Cuny, E, Tison, F, et al. Deep brain pallidal stimulation for movement disorders in neuroacanthocytosis. Neurology. 2007;68(2):160–1.Google Scholar
Li, P, Huang, R, Song, W, et al. Deep brain stimulation of the globus pallidus internal improves symptoms of chorea-acanthocytosis. Neurol Sci. 2012;33(2):269–74.Google Scholar
Piedimonte, F, Andreani, JC, Piedimonte, L, et al. Remarkable clinical improvement with bilateral globus pallidus internus deep brain stimulation in a case of Lesch–Nyhan disease: Five-year follow-up. Neuromodulation. 2015;18(2):118–22; discussion 22.Google Scholar
Abel, TJ, Dalm, BD, Grossbach, AJ, et al. Lateralized effect of pallidal stimulation on self-mutilation in Lesch–Nyhan disease. J Neurosurg Pediatr. 2014;14(6):594–7.Google Scholar
Deon, LL, Kalichman, MA, Booth, CL, Slavin, KV, Gaebler-Spira, DJ. Pallidal deep-brain stimulation associated with complete remission of self-injurious behaviors in a patient with Lesch–Nyhan syndrome: A case report. J Child Neurol. 2012;27(1):117–20.Google Scholar
Torres, RJ, Puig, JG. Hypoxanthine–guanine phosophoribosyltransferase (HPRT) deficiency: Lesch–Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.Google Scholar
Harris, JC, Lee, RR, Jinnah, HA, et al. Craniocerebral magnetic resonance imaging measurement and findings in Lesch–Nyhan syndrome. Arch Neurol. 1998;55(4):547–53.Google Scholar
Watts, RW, Spellacy, E, Gibbs, DA, Clinical, post-mortem, biochemical and therapeutic observations on the Lesch–Nyhan syndrome with particular reference to the neurological manifestations. Q J Med. 1982;51(201):4378.Google Scholar
Lloyd, KG, Hornykiewicz, O, Davidson, L, et al. Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch–Nyhan syndrome. N Engl J Med. 1981;305(19):1106–11.Google Scholar
Silverstein, FS, Johnston, MV, Hutchinson, RJ, Edwards, NL. Lesch–Nyhan syndrome: CSF neurotransmitter abnormalities. Neurology. 1985;35(6):907–11.Google Scholar
Lumsden, DE, Kaminska, M, Ashkan, K, Selway, R, Lin, JP. Deep brain stimulation for childhood dystonia: Is “where” as important as in “whom”? Eur J Paediatr Neurol. 2017;21(1):176–84.Google Scholar
Cif, L, Biolsi, B, Gavarini, S, et al. Antero-ventral internal pallidum stimulation improves behavioral disorders in Lesch–Nyhan disease. Mov Disord. 2007;22(14):2126–9.Google Scholar
Pralong, E, Pollo, C, Coubes, P, et al. Electrophysiological characteristics of limbic and motor globus pallidus internus (GPi) neurons in two cases of Lesch–Nyhan syndrome. Neurophysiol Clin. 2005; 35 (5-6): 168–73.Google Scholar
Pralong, E, Pollo, C, Villemure, JG, Debatisse, D. Opposite effects of internal globus pallidus stimulation on pallidal neurones activity. Mov Disord. 2007;22(13):1879–84.Google Scholar
Franzini, A, Cordella, R, Rizzi, M, et al. Deep brain stimulation in critical care conditions. J Neural Transm (Vienna). 2014;121(4):391–8.Google Scholar
Keen, JR, Przekop, A, Olaya, JE, Zouros, A, Hsu, FP. Deep brain stimulation for the treatment of childhood dystonic cerebral palsy. J Neurosurg Pediatr. 2014;14(6):585–93.Google Scholar
Eltahawy, HA, Saint-Cyr, J, Giladi, N, Lang, AE, Lozano, AM. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: Outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54(3):613–19; discussion 9-21.Google Scholar
Rakocevic, G, Lyons, KE, Wilkinson, SB, Overman, JW, Pahwa, R. Bilateral pallidotomy for severe dystonia in an 18-month-old child with glutaric aciduria. Stereotact Funct Neurosurg. 2004; 82 (2-3): 80–3.Google Scholar
Meoni, S, Fraix, V, Castrioto, A, et al. Pallidal deep brain stimulation for dystonia: A long term study. J Neurol Neurosurg Psychiatry. 2017;88(11):960–7.Google Scholar
Hedera, P. Treatment of Wilson’s disease motor complications with deep brain stimulation. Ann N Y Acad Sci. 2014;1315:1623.Google Scholar
Dwarakanath, S, Zafar, A, Yadav, R, et al. Does lesioning surgery have a role in the management of multietiological tremor in the era of deep brain stimulation? Clin Neurol Neurosurg. 2014;125:131–6.Google Scholar
Starikov, AS. Electrical stimulation of the brain in Wilson–Konovalov hepatocerebral dystrophy (a neuromorphological and neurophysiological analysis). Neurosci Behav Physiol. 2002;32(3):255–7.Google Scholar
Beaulieu-Boire, I, Aquino, CC, Fasano, A, et al. Deep brain stimulation in rare inherited dystonias. Brain Stimul. 2016;9(6):905–10.Google Scholar
Chang, FC, Westenberger, A, Dale, RC, et al. Phenotypic insights into ADCY5-associated disease. Mov Disord. 2016;31(7):1033–40.Google Scholar
Dy, ME, Chang, FC, Jesus, SD, et al. Treatment of ADCY5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: A multicenter case series. J Child Neurol. 2016;31(8):1027-35.Google Scholar
Meijer, IA, Miravite, J, Kopell, BH, Lubarr, N. Deep brain stimulation in an additional patient with ADCY5-related movement disorder. J Child Neurol. 2017;32(4):438–9.Google Scholar
FitzGerald, JJ, Rosendal, F, de Pennington, N, et al. Long-term outcome of deep brain stimulation in generalised dystonia: A series of 60 cases. J Neurol Neurosurg Psychiatry. 2014;85(12):1371–6.Google Scholar
Elkay, M, Silver, K, Penn, RD, Dalvi, A. Dystonic storm due to Batten’s disease treated with pallidotomy and deep brain stimulation. Mov Disord. 2009;24(7):1048–53.Google Scholar
Hasegawa, H, Alkufri, F, Munro, N, et al. GPi deep brain stimulation for palliation of hemidystonia and hemibody jerking in a patient with suspected adult onset neuronal ceroid lipofuscinosis. J Neurol Sci. 2016;362:228–9.Google Scholar
Roze, E, Navarro, S, Cornu, P, Welter, ML, Vidailhet, M. Deep brain stimulation of the globus pallidus for generalized dystonia in GM1 type 3 gangliosidosis: Technical case report. Neurosurgery. 2006;59(6):E1340; discussion E.Google Scholar
Payne, MS, Brown, BL, Rao, J, Payne, BR. Treatment of phenylketonuria-associated tremor with deep brain stimulation: Case report. Neurosurgery. 2005;56(4):E868; discussion E.Google Scholar
Aydin, S, Abuzayed, B, Varlibas, F, et al. Treatment of homocystinuria-related dystonia with deep brain stimulation: A case report. Stereotact Funct Neurosurg. 2011;89(4):210–3.Google Scholar
van Karnebeek, C, Horvath, G, Murphy, T, et al. Deep brain stimulation and dantrolene for secondary dystonia in X-linked adrenoleukodystrophy. JIMD Rep. 2015;15:113–6.Google Scholar
Mammis, A, Pourfar, M, Feigin, A, Mogilner, AY. Deep brain stimulation for the treatment of tremor and ataxia associated with abetalipoproteinemia. Tremor Other Hyperkinet Mov (NY). 2012;2.Google Scholar
Sriganesh, K, Manikandan, S. Anesthetic management of a child with severe dystonia and G6PD deficiency for deep brain stimulation. J Neurosurg Anesthesiol. 2015;27(3):271–2.Google Scholar

Bibliography

Ginocchio, VM, Brunetti-Pierri, N. Progress toward improved therapies for inborn errors of metabolism. Hum Mol Genet. 2016;25(R1):R2735.Google Scholar
Piguet, F, Alves, S, Cartier, N. Clinical gene therapy for neurodegenerative diseases: Past, present, and future. Hum Gene Ther. 2017;28(11):9881003.CrossRefGoogle ScholarPubMed
Geraets, RD, Koh, S, Hastings, ML, et al. Moving towards effective therapeutic strategies for neuronal ceroid lipofuscinosis. Orphanet J Rare Dis. 2016;11:40.Google Scholar
Pastores, GM. Therapeutic approaches for lysosomal storage diseases. Ther Adv Endocrinol Metab. 2010;1(4):177–88.Google Scholar
Sanchez-Fernandez, EM, Garcia Fernandez, JM, Mellet, CO. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: Lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun (Camb). 2016;52(32):5497–515.Google Scholar
van den Broek, BTA, Page, K, Paviglianiti, A, et al. Early and late outcomes after cord blood transplantation for pediatric patients with inherited leukodystrophies. Blood Adv. 2018;2(1):4960.Google Scholar
Chandler, RJ, Venditti, CP. Gene therapy for metabolic diseases. Transl Sci Rare Dis. 2016;1(1):7389.Google Scholar
Schneller, JL, Lee, CM, Bao, G, Venditti, CP. Genome editing for inborn errors of metabolism: Advancing towards the clinic. BMC Med. 2017;15(1):43.Google Scholar
Enns, GM, Cohen, BH. Clinical trials in mitochondrial disease: An update on EPI-743 and RP103. J Inborn Error Metab Screen. 2017;5:2326409817733013.Google Scholar
Viscomi, C. Toward a therapy for mitochondrial disease. Biochem Soc Trans. 2016;44(5):1483–90.Google Scholar
Nightingale, H, Pfeffer, G, Bargiela, D, Horvath, R, Chinnery, PF. Emerging therapies for mitochondrial disorders. Brain. 2016;139(Pt 6):1633–48.Google Scholar
Yoon, DH, Kwon, OY, Mang, JY, et al. Protective potential of resveratrol against oxidative stress and apoptosis in Batten disease lymphoblast cells. Biochem Biophys Res Commun. 2011;414(1):4952.Google Scholar
Wei, H, Kim, SJ, Zhang, Z, et al. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet. 2008;17(4):469-77.Google Scholar
Johnson, SC, Yanos, ME, Kayser, EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–8.Google Scholar
Nagamani, SC, Campeau, PM, Shchelochkov, OA, et al. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–46.Google Scholar
Brunetti-Pierri, N, Erez, A, Shchelochkov, O, Craigen, W, Lee, B. Systemic hypertension in two patients with ASL deficiency: A result of nitric oxide deficiency? Mol Genet Metab. 2009; 98 (1–2): 195–7.Google Scholar
Alkufri, F, Harrower, T, Rahman, Y, et al. Molybdenum cofactor deficiency presenting with a parkinsonism–dystonia syndrome. Mov Disord. 2013;28(3):399401.Google Scholar
Carman, KB, Yildirim, GK, Kiral, E, et al. Status dystonicus: A rare presentation of molybdenum cofactor deficiency. Int J Clin Pediatr. 2017; 6 (3-4): 51–3.Google Scholar
Lee, HJ, Adham, IM, Schwarz, G, et al. Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum Mol Genet. 2002;11(26):3309–17.Google Scholar
Schwarz, G, Santamaria-Araujo, JA, Wolf, S, et al. Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli. Hum Mol Genet. 2004;13(12):1249–55.Google Scholar
Veldman, A, Santamaria-Araujo, JA, Sollazzo, S, et al. Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics. 2010;125(5):e1249–54.Google Scholar
Hitzert, MM, Bos, AF, Bergman, KA, et al. Favorable outcome in a newborn with molybdenum cofactor type A deficiency treated with cPMP. Pediatrics. 2012;130(4):e1005–10.Google Scholar
Schwahn, BC, Van Spronsen, FJ, Belaidi, AA, et al. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: A prospective cohort study. Lancet. 2015;386(10007):1955–63.Google Scholar
Zorzi, G, Zibordi, F, Chiapparini, L, et al. Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: Results of a phase II pilot trial. Mov Disord. 2011;26(9):1756–9.Google Scholar
Hayflick, SJ, Hogarth, P. As iron goes, so goes disease? Haematologica. 2011;96(11):1571–2.Google Scholar
Schneider, SA, Dusek, P, Hardy, J, et al. Genetics and pathophysiology of neurodegeneration with brain iron accumulation (NBIA). Curr Neuropharmacol. 2013;11(1):5979.Google Scholar
Hogarth, P. Neurodegeneration with brain iron accumulation: Diagnosis and management. J Mov Disord. 2015;8(1):113.Google Scholar
Rana, A, Seinen, E, Siudeja, K, et al. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci USA. 2010;107(15):6988–93.Google Scholar
Brunetti, D, Dusi, S, Giordano, C, et al. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model. Brain. 2014;137(Pt 1):5768.Google Scholar
TIRCON (Treat Iron-Related Childhood-Onset Neurodegeneration). Report summary: Project ID 277984, funded by FP7-HEALTH. June 5, 2017. Available from: https://cordis.europa.eu/project/id/277984/reporting/de.Google Scholar
Elbaum, D, Beconi, MG, Monteagudo, E, et al. Fosmetpantotenate (RE-024), a phosphopantothenate replacement therapy for pantothenate kinase-associated neurodegeneration: Mechanism of action and efficacy in nonclinical models. PLoS One. 2018;13(3):e0192028.Google Scholar
Mazzocchi-Jones, D. Impaired corticostriatal LTP and depotentiation following iPLA2 inhibition is restored following acute application of DHA. Brain Res Bull. 2015;111:6975.Google Scholar
Schneider, SA, Kurian, MA. What the future holds for the genetic diagnosis for neurodegeneration with brain iron accumulation syndromes? Expert Opinion on Orphan Drugs. 2015;3(4):353–6.Google Scholar
Hogarth, P, Kurian, MA, Gregory, A, et al. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab. 2017;120(3):278–87.Google Scholar
Pascual, JM, Liu, P, Mao, D, et al. Triheptanoin for glucose transporter type I deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol. 2014;71(10):1255–65.Google Scholar
Mochel, F, Hainque, E, Gras, D, et al. Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry. 2016;87(5):550–3.Google Scholar
Schols, L, Rattay, TW, Martus, P, et al. Hereditary spastic paraplegia type 5: Natural history, biomarkers and a randomized controlled trial. Brain. 2017;140(12):3112–27.Google Scholar
Mignarri, A, Malandrini, A, Del Puppo, M, et al. Treatment of SPG5 with cholesterol-lowering drugs. J Neurol. 2015;262(12):2783–5.Google Scholar
Scholl-Burgi, S, Holler, A, Pichler, K, et al. Ketogenic diets in patients with inherited metabolic disorders. J Inherit Metab Dis. 2015;38(4):765–73.Google Scholar
Pearl, PL, Schreiber, J, Theodore, WH, et al. Taurine trial in succinic semialdehyde dehydrogenase deficiency and elevated CNS GABA. Neurology. 2014;82(11):940–4.Google Scholar
Mohamed, FE, Al-Gazali, L, Al-Jasmi, F, Ali, BR. Pharmaceutical chaperones and proteostasis regulators in the therapy of lysosomal storage disorders: Current perspective and future promises. Front Pharmacol. 2017;8:448.Google Scholar
Balch, WE, Morimoto, RI, Dillin, A, Kelly, JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916–9.Google Scholar
Singh, LR, Gupta, S, Honig, NH, Kraus, JP, Kruger, WD. Activation of mutant enzyme function in vivo by proteasome inhibitors and treatments that induce Hsp70. PLoS Genet. 2010;6(1):e1000807.Google Scholar
Narita, A, Shirai, K, Itamura, S, et al. Ambroxol chaperone therapy for neuronopathic Gaucher disease: A pilot study. Ann Clin Transl Neurol. 2016;3(3):200–15.Google Scholar
Motabar, O, Huang, W, Marugan, JJ, et al. Identification of modulators of the n370s mutant form of glucocerebrosidase as a potential therapy for gaucher disease: Chemotype 1. 2010;Mar 24 (updated May 5, 2011). In Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD: National Center for Biotechnology Information (US). Available from: www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/books/NBK63601/.Google Scholar
Goldin, E, Zheng, W, Motabar, O, et al. High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase. PLoS One. 2012;7(1):e29861.Google Scholar
Steet, RA, Chung, S, Wustman, B, et al. The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms. Proc Natl Acad Sci USA. 2006;103(37):13813–8.Google Scholar
Aflaki, E, Moaven, N, Borger, DK, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell. 2016;15(1):7788.Google Scholar
Tominaga, L, Ogawa, Y, Taniguchi, M, et al. Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse. Brain Dev. 2001;23(5):284–7.Google Scholar
Matsuda, J, Suzuki, O, Oshima, A, et al. Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci USA. 2003;100(26):15912–7.Google Scholar
Schalli, M, Weber, P, Tysoe, C, et al. A new type of pharmacological chaperone for GM1-gangliosidosis related human lysosomal beta-galactosidase: N-substituted 5-amino-1-hydroxymethyl-cyclopentanetriols. Bioorg Med Chem Lett. 2017;27(15):3431–5.Google Scholar
Clarke, JT, Mahuran, DJ, Sathe, S, et al. An open-label phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay–Sachs or Sandhoff variants). Mol Genet Metab. 2011;102(1):612.Google Scholar
Argyriou, C, D’Agostino, MD, Braverman, N. Peroxisome biogenesis disorders. Transl Sci Rare Dis. 2016;1(2):111–44.Google Scholar
Wood, PL, Khan, MA, Smith, T, et al. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus–Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. Lipids Health Dis. 2011;10:182.Google Scholar
Wei, H, Kemp, S, McGuinness, MC, Moser, AB, Smith, KD. Pharmacological induction of peroxisomes in peroxisome biogenesis disorders. Ann Neurol. 2000;47(3):286–96.Google Scholar
Li, X, Baumgart, E, Dong, GX, et al. PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol. 2002;22(23):8226–40.Google Scholar
Dranchak, PK, Di Pietro, E, Snowden, A, et al. Nonsense suppressor therapies rescue peroxisome lipid metabolism and assembly in cells from patients with specific PEX gene mutations. J Cell Biochem. 2011;112(5):1250–8.Google Scholar
Schulz, A, Ajayi, T, Specchio, N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med. 2018;378(20):1898–907.Google Scholar
Meng, Y, Sohar, I, Wang, L, Sleat, DE, Lobel, P. Systemic administration of tripeptidyl peptidase I in a mouse model of late infantile neuronal ceroid lipofuscinosis: Effect of glycan modification. PLoS One. 2012;7(7):e40509.Google Scholar
Meng, Y, Sohar, I, Sleat, DE, et al. Effective intravenous therapy for neurodegenerative disease with a therapeutic enzyme and a peptide that mediates delivery to the brain. Mol Ther. 2014;22(3):547–53.Google Scholar
Boado, RJ, Pardridge, WM. The Trojan horse liposome technology for nonviral gene transfer across the blood–brain barrier. J Drug Deliv. 2011;2011:296151.Google Scholar
Pardridge, WM. Molecular Trojan horses for blood–brain barrier drug delivery. Discov Med. 2006;6(34):139-43.Google Scholar
Muro, S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(2):189204.Google Scholar
Coutinho, MF, Santos, JI, Matos, L, Alves, S. Genetic substrate reduction therapy: A promising approach for lysosomal storage disorders. Diseases. 2016;4(4).Google Scholar
Kirkegaard, T, Gray, J, Priestman, DA, et al. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med. 2016;8(355):355ra118.Google Scholar
Davidson, CD, Fishman, YI, Puskas, I, et al. Efficacy and ototoxicity of different cyclodextrins in Niemann–Pick C disease. Ann Clin Transl Neurol. 2016;3(5):366–80.Google Scholar
Kuhl, JS, Suarez, F, Gillett, GT, et al. Long-term outcomes of allogeneic haematopoietic stem cell transplantation for adult cerebral X-linked adrenoleukodystrophy. Brain. 2017;140(4):953–66.Google Scholar
Kuhl, JS, Kupper, J, Baque, H, et al. Potential risks to stable long-term outcome of allogeneic hematopoietic stem cell transplantation for children with cerebral X-linked adrenoleukodystrophy. JAMA Netw Open. 2018;1(3):e180769.Google Scholar
Barth, AL, Horovitz, DDG. Hematopoietic stem cell transplantation in mucopolysaccharidosis type II: A literature review and critical analysis. J Inborn Error Metab Screen. 2018;6:2326409818779097.Google Scholar
Mercati, O, Pichard, S, Ouachee, M, et al. Limited benefits of presymptomatic cord blood transplantation in neurovisceral acid sphingomyelinase deficiency (ASMD) intermediate type. Eur J Paediatr Neurol. 2017;21(6):907–11.Google Scholar
Lonnqvist, T, Vanhanen, SL, Vettenranta, K, et al. Hematopoietic stem cell transplantation in infantile neuronal ceroid lipofuscinosis. Neurology. 2001;57(8):1411–6.Google Scholar
Lake, BD, Henderson, DC, Oakhill, A, Vellodi, A. Bone marrow transplantation in Batten disease (neuronal ceroid-lipofuscinosis). Will it work? Preliminary studies on coculture experiments and on bone marrow transplant in late infantile Batten disease. Am J Med Genet. 1995;57(2):369–73.Google Scholar
Yuza, Y, Yokoi, K, Sakurai, K, et al. Allogenic bone marrow transplantation for late-infantile neuronal ceroid lipofuscinosis. Pediatr Int. 2005;47(6):681–3.Google Scholar
Selden, NR, Al-Uzri, A, Huhn, SL, et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr. 2013;11(6):643–52.Google Scholar
Hu, P, Li, Y, Nikolaishvili-Feinberg, N, et al. Hematopoietic stem cell transplantation and lentiviral vector-based gene therapy for Krabbe’s disease: Present convictions and future prospects. J Neurosci Res. 2016;94(11):1152–68.Google Scholar
Wadhwa, A, Chen, Y, Holmqvist, A, et al. Late mortality after allogeneic blood or marrow transplantation for inborn errors of metabolism: A report from the Blood or Marrow Transplant Survivor Study-2 (BMTSS-2). Biol Blood Marrow Transplant. 2019;25(2):328–34.Google Scholar
Cartier, N, Hacein-Bey-Abina, S, Bartholomae, CC, et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol. 2012;507:187–98.Google Scholar
Nagabhushan Kalburgi, S, Khan, NN, Gray, SJ. Recent gene therapy advancements for neurological diseases. Discov Med. 2013;15(81):111–9.Google Scholar
Eichler, F, Duncan, C, Musolino, PL, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630–8. doi:10.1056/NEJMoa1700554. Epub 2017 Oct 4.Google Scholar
Chien, YH, Lee, NC, Tseng, SH, et al. Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: An open-label, phase 1/2 trial. Lancet Child Adolesc Health. 2017;1(4):265–73.Google Scholar
Perez, B, Gutierrez-Solana, LG, Verdu, A, et al. Clinical, biochemical, and molecular studies in pyridoxine-dependent epilepsy. Antisense therapy as possible new therapeutic option. Epilepsia. 2013;54(2):239–48.Google Scholar
Yin, H, Xue, W, Chen, S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551–3.Google Scholar
Yin, H, Song, CQ, Dorkin, JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328–33.Google Scholar
Pankowicz, FP, Barzi, M, Legras, X, et al. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun. 2016;7:12642.Google Scholar
Nygaard, S, Barzel, A, Haft, A, et al. A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med. 2016;8(342):342ra79.Google Scholar
Yang, Y, Wang, L, Bell, P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8.Google Scholar
Sharma, R, Anguela, XM, Doyon, Y, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015;126(15):1777–84.Google Scholar
Brooks, DA, Muller, VJ, Hopwood, JJ. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol Med. 2006;12(8):367–73.Google Scholar
Miller, JN, Chan, CH, Pearce, DA. The role of nonsense-mediated decay in neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22(13):2723-34.Google Scholar
Ho, G, Reichardt, J, Christodoulou, J. In vitro read-through of phenylalanine hydroxylase (PAH) nonsense mutations using aminoglycosides: A potential therapy for phenylketonuria. J Inherit Metab Dis. 2013;36(6):955–9.Google Scholar
Medina, DL, Fraldi, A, Bouche, V, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell. 2011;21(3):421–30.Google Scholar
Song, W, Wang, F, Savini, M, et al. TFEB regulates lysosomal proteostasis. Hum Mol Genet. 2013;22(10):19942009.Google Scholar
Moskot, M, Montefusco, S, Jakobkiewicz-Banecka, J, et al. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J Biol Chem. 2014;289(24):17054–69.Google Scholar
Xu, M, Liu, K, Swaroop, M, et al. delta-Tocopherol reduces lipid accumulation in Niemann–Pick type C1 and Wolman cholesterol storage disorders. J Biol Chem. 2012;287(47):39349–60.Google Scholar
Hensley, K, Venkova, K, Christov, A, Gunning, W, Park, J. Collapsin response mediator protein-2: An emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol. 2011;43(3):180–91.Google Scholar
Khanna, R, Wilson, SM, Brittain, JM, et al. Opening Pandora’s jar: A primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. Future Neurol. 2012;7(6):74–71.Google Scholar
Hensley, K, Christov, A, Kamat, S, et al. Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci. 2010;30(8):2979–88.Google Scholar
Beyreuther, BK, Freitag, J, Heers, C, et al. Lacosamide: A review of preclinical properties. CNS Drug Rev. 2007;13(1):2142.Google Scholar
Sarkar, C, Chandra, G, Peng, S, et al. Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: Therapeutic implications for INCL. Nat Neurosci. 2013;16(11):1608–17.CrossRefGoogle ScholarPubMed
Lara, MC, Weiss, B, Illa, I, et al. Infusion of platelets transiently reduces nucleoside overload in MNGIE. Neurology. 2006;67(8):1461–3.Google Scholar
Hussein, E. Non-myeloablative bone marrow transplant and platelet infusion can transiently improve the clinical outcome of mitochondrial neurogastrointestinal encephalopathy: A case report. Transfus Apher Sci. 2013;49(2):208–11.Google Scholar
Moran, NF, Bain, MD, Muqit, MM, Bax, BE. Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology. 2008;71(9):686–8.Google Scholar
Levene, M, Coleman, DG, Kilpatrick, HC, et al. Preclinical toxicity evaluation of erythrocyte-encapsulated thymidine phosphorylase in BALB/c mice and beagle dogs: An enzyme-replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy. Toxicol Sci. 2013;131(1):311–24.Google Scholar
Camara, Y, Gonzalez-Vioque, E, Scarpelli, M, et al. Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum Mol Genet. 2014;23(9):2459–67.Google Scholar
Garone, C, Garcia-Diaz, B, Emmanuele, V, et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med. 2014;6(8):1016–27.Google Scholar
Cerutti, R, Pirinen, E, Lamperti, C, et al. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042–9.Google Scholar
Viscomi, C, Bottani, E, Civiletto, G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab. 2011;14(1):8090.Google Scholar
Khan, NA, Auranen, M, Paetau, I, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721–31.Google Scholar
Wenz, T, Diaz, F, Spiegelman, BM, Moraes, CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008;8(3):249–56.Google Scholar
Bastin, J, Lopes-Costa, A, Djouadi, F. Exposure to resveratrol triggers pharmacological correction of fatty acid utilization in human fatty acid oxidation-deficient fibroblasts. Hum Mol Genet. 2011;20(10):2048–57.Google Scholar
Yiu, EM, Tai, G, Peverill, RE, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–53.Google Scholar
Felici, R, Cavone, L, Lapucci, A, et al. PARP inhibition delays progression of mitochondrial encephalopathy in mice. Neurotherapeutics. 2014;11(3):651–64.Google Scholar
DeVay, RM, Dominguez-Ramirez, L, Lackner, LL, et al. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol. 2009;186(6):793803.Google Scholar
Dassa, EP, Dufour, E, Goncalves, S, et al. Expression of the alternative oxidase complements cytochrome C oxidase deficiency in human cells. EMBO Mol Med. 2009;1(1):30–6.Google Scholar
Fernandez-Ayala, DJ, Sanz, A, Vartiainen, S, et al. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 2009;9(5):449–60.Google Scholar
Kim, J, Kundu, M, Viollet, B, Guan, KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.Google Scholar
Peng, M, Ostrovsky, J, Kwon, YJ, et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum Mol Genet. 2015;24(17):4829–47.Google Scholar
Ma, H, Folmes, CD, Wu, J, et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 2015;524(7564):234–8.Google Scholar
Gammage, PA, Rorbach, J, Vincent, AI, Rebar, EJ, Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med. 2014;6(4):458–66.Google Scholar
Bacman, SR, Williams, SL, Pinto, M, Peralta, S, Moraes, CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013;19(9):1111–3.Google Scholar
Hsu, PD, Lander, ES, Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell. 2014;157(6):1262–78.Google Scholar
Cox, DB, Platt, RJ, Zhang, F. Therapeutic genome editing: Prospects and challenges. Nat Med. 2015;21(2):121–31.Google Scholar
Reddy, P, Ocampo, A, Suzuki, K, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161(3):459–69.Google Scholar
Hornig-Do, HT, Montanari, A, Rozanska, A, et al. Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations. EMBO Mol Med. 2014;6(2):183–93.Google Scholar
Perli, E, Giordano, C, Pisano, A, et al. The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells. EMBO Mol Med. 2014;6(2):169–82.Google Scholar
Di Meo, I, Auricchio, A, Lamperti, C, et al. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med. 2012;4(9):1008–14.Google Scholar
Torres-Torronteras, J, Viscomi, C, Cabrera-Perez, R, et al. Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol Ther. 2014;22(5):901–7.Google Scholar
Bottani, E, Giordano, C, Civiletto, G, et al. AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol Ther. 2014;22(1):10-7.Google Scholar
Yu, H, Koilkonda, RD, Chou, TH, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109(20):E1238–47.Google Scholar
Wan, X, Pei, H, Zhao, MJ, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.Google Scholar
Kurian, MA, Gissen, P, Smith, M, Heales, S, Jr., Clayton, PT. The monoamine neurotransmitter disorders: An expanding range of neurological syndromes. Lancet Neurol. 2011;10(8):721–33.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×