Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-03T18:46:28.644Z Has data issue: false hasContentIssue false

Chapter 2 - Pathogenesis of movement disorders: basic neuroanatomy and pathophysiology

from Section I - General principles

Published online by Cambridge University Press:  05 April 2014

K. Amande M. Pauls
Affiliation:
Department of Neurology, University Hospital Cologne, Cologne, Germany
Lars Timmermann
Affiliation:
Department of Neurology, University Hospital Cologne, Cologne, Germany
Werner Poewe
Affiliation:
Medical University Innsbruck
Joseph Jankovic
Affiliation:
Baylor College of Medicine, Texas
Get access

Summary

Introduction

Movement disorders are conditions affecting the ability to produce and control voluntary as well as involuntary movements and comprise a large group of diseases with a wide range of different etiologies and very diverse clinical presentations. For many of the conditions, the pathophysiology remains unclear or at least partially unknown. Some of the more common and “classical” movement disorders, such as Parkinson’s disease and Huntington’s disease, arise from disturbances of the basal ganglia. Hence, movement disorders are sometimes also referred to as basal ganglia disorders.

There is visible evidence of anatomical changes in the basal ganglia in many movement disorders, such as degeneration of the caudate nucleus in Huntington’s disease, or degeneration of the substantia nigra in Parkinson’s disease (Tretiakoff 1919). Damage to these specific anatomical structures due to causes other than the idiopathic disease such as infectious disease, vascular changes, or tumors is known to cause symptoms which can resemble, for example, Parkinson’s disease or the chorea in Huntington’s disease. For many other movement disorders such as idiopathic dystonia or DYT-1-positive dystonia, no such gross anatomical alterations have been found, but (secondary) dystonic syndromes occur in patients with lesions of the putamen, globus pallidus, caudate nucleus, as well as the thalamus and other structures outside the basal ganglia. Several lines of evidence suggest that at least some movement disorders are likely to result from malfunction outside the basal ganglia, such as cortical motor areas, cerebellum, or brainstem and pontine motor centers. For some entities such as psychogenic movement disorders or some forms of idiopathic late onset dystonia, the pathophysiology remains largely unknown.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., Crutcher, M. D. and DeLong, M. R. (1990). “Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions,” Prog. Brain Res. 85: 119–46.CrossRefGoogle ScholarPubMed
Amtage, F., Henschel, K., Schelter, B., Vesper, J., Timmer, J., Lucking, C. H., et al. (2008). “Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients,” Neurosci. Lett. 442(3): 195–9.CrossRefGoogle ScholarPubMed
Argyelan, M., Carbon, M., Niethammer, M., Ulug, A. M., Voss, H. U., Bressman, S. B., et al. (2009). “Cerebellothalamocortical connectivity regulates penetrance in dystonia,” J. Neurosci. 29(31): 9740–7.CrossRefGoogle ScholarPubMed
Bara-Jimenez, W., Shelton, P., and Hallett, M. (2000a). “Spatial discrimination is abnormal in focal hand dystonia,” Neurology 55(12): 1869–73.CrossRefGoogle ScholarPubMed
Bara-Jimenez, W., Shelton, P., Sanger, T. D., and Hallett, M. (2000b). “Sensory discrimination capabilities in patients with focal hand dystonia,” Ann. Neurol. 47(3): 377–80.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Benito-Leon, J., Alvarez-Linera, J., Hernandez-Tamames, J. A., Alonso-Navarro, H., Jimenez-Jimenez, F. J., and Louis, E. D. (2009). “Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla,” J. Neurol. Sci. 287(1–2): 138–42.CrossRefGoogle ScholarPubMed
Berardelli, A., Rothwell, J. C., Day, B. L. and Marsden, C. D. (1985). “Pathophysiology of blepharospasm and oromandibular dystonia,” Brain 108(Pt. 3): 593–608.CrossRefGoogle ScholarPubMed
Bertolasi, L., Romito, S., Tinazzi, M., Rizzuto, N., and Priori, A. (2003). “Impaired heteronymous somatosensory motor cortical inhibition in dystonia,” Mov. Disord. 18(11): 1367–73.CrossRefGoogle ScholarPubMed
Bhatia, K. P. and Marsden, C. D. (1994). “The behavioural and motor consequences of focal lesions of the basal ganglia in man,” Brain 117(Pt. 4): 859–76.CrossRefGoogle ScholarPubMed
Braak, H., Rub, U., Gai, W. P., and Del Tredici, K. (2003). “Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen,” J. Neural. Transm. 110(5): 517–36.CrossRefGoogle ScholarPubMed
Bradley, D., Whelan, R., Walsh, R., Reilly, R. B., Hutchinson, S., Molloy, F., et al. (2009). “Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia,” Brain 132(Pt 9): 2327–35.CrossRefGoogle ScholarPubMed
Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., and Di Lazzaro, V. (2001). “Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease,” J. Neurosci. 21(3): 1033–8.CrossRefGoogle ScholarPubMed
Byrnes, M. L., Thickbroom, G. W., Wilson, S. A., Sacco, P., Shipman, J. M., Stell, R., et al. (1998). “The corticomotor representation of upper limb muscles in writer’s cramp and changes following botulinum toxin injection,” Brain 121(Pt. 5): 977–88.CrossRefGoogle ScholarPubMed
Carbon, M. and Eidelberg, D. (2009). “Abnormal structure-function relationships in hereditary dystonia,” Neuroscience 164(1): 220–9.CrossRefGoogle ScholarPubMed
Carbon, M., Kingsley, P. B., Su, S., Smith, G. S., Spetsieris, P., Bressman, S., et al. (2004). “Microstructural white matter changes in carriers of the DYT1 gene mutation,” Ann. Neurol. 56(2): 283–6.CrossRefGoogle ScholarPubMed
Carbon, M., Kingsley, P. B., Tang, C., Bressman, S., and Eidelberg, D. (2008). “Microstructural white matter changes in primary torsion dystonia,” Mov. Disord. 23(2): 234–9.CrossRefGoogle ScholarPubMed
Casey, D. E. (2004). “Pathophysiology of antipsychotic drug-induced movement disorders,” J. Clin. Psychiatry 65(9): 25–8.Google ScholarPubMed
Cherubini, E., Herrling, P. L., Lanfumey, L., and Stanzione, P. (1988). “Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro,” J. Physiol. 400: 677–90.CrossRefGoogle ScholarPubMed
Choi, I. S. (2002). “Parkinsonism after carbon monoxide poisoning,” Eur. Neurol. 48(1): 30–3.CrossRefGoogle ScholarPubMed
Daniels, C., Peller, M., Wolff, S., Alfke, K., Witt, K., Gaser, C., et al. (2006). “Voxel-based morphometry shows no decreases in cerebellar gray matter volume in essential tremor,” Neurology 67(8): 1452–6.CrossRefGoogle ScholarPubMed
de Reuck, J., Sieben, G., de Coster, W., and vander Ecken, H. (1980). “Parkinsonism in patients with cerebral infarcts,” Clin. Neurol. Neurosurg. 82(3): 177–85.CrossRefGoogle ScholarPubMed
Delmaire, C., Vidailhet, M., Wassermann, D., Descoteaux, M., Valabregue, R., Bourdain, F., et al. (2009). “Diffusion abnormalities in the primary sensorimotor pathways in writer’s cramp,” Arch. Neurol. 66(4): 502–8.CrossRefGoogle ScholarPubMed
Detante, O., Vercueil, L., Thobois, S., Broussolle, E., Costes, N., Lavenne, F., et al. (2004). “Globus pallidus internus stimulation in primary generalized dystonia: a H215O PET study,” Brain 127(Pt. 8): 1899–908.CrossRefGoogle ScholarPubMed
Deuschl, G. and Elble, R. (2009). “Essential tremor–neurodegenerative or nondegenerative disease towards a working definition of ET,” Mov. Disord. 24(14): 2033–41.CrossRefGoogle ScholarPubMed
Ebersbach, G., Sojer, M., Valldeoriola, F., Wissel, J., Muller, J., Tolosa, E., et al. (1999). “Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy,” Brain 122(Pt. 7): 1349–55.CrossRefGoogle ScholarPubMed
Eggers, C., Pedrosa, D. J., Kahraman, D., Maier, F., Lewis, C. J., Fink, G. R., et al. (2012). “Parkinson subtypes progress differently in clinical course and imaging pattern,” PLoS One 7(10): e46813.CrossRefGoogle ScholarPubMed
Eidelberg, D., Moeller, J. R., Antonini, A., Kazumata, K., Nakamura, T., Dhawan, V., et al. (1998). “Functional brain networks in DYT1 dystonia,” Ann. Neurol. 44(3): 303–12.CrossRefGoogle ScholarPubMed
Florin, E., Reck, C., Burghaus, L., Lehrke, R., Gross, J., Sturm, V., et al. (2008). “Ten Hertz thalamus stimulation increases tremor activity in the subthalamic nucleus in a patient with Parkinson’s disease,” Clin. Neurophysiol. 119(9): 2098–103.CrossRefGoogle Scholar
Fudge, J. L. and Haber, S. N. (2002). “Defining the caudal ventral striatum in primates: cellular and histochemical features,” J. Neurosci. 22(23): 10078–82.CrossRefGoogle ScholarPubMed
Garcia-Reitböck, P., Anichtchik, O., Bellucci, A., Iovino, M., Ballini, C., Fineberg, E., et al. (2010). “SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease,” Brain 133(Pt. 7): 2032–44.CrossRefGoogle Scholar
Goto, S., Lee, L. V., Munoz, E. L., Tooyama, I., Tamiya, G., Makino, S., et al. (2005). “Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism,” Ann. Neurol. 58(1): 7–17.CrossRefGoogle ScholarPubMed
Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., et al. (1996). “Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons,” Nat. Med. 2(9): 1017–21.CrossRefGoogle ScholarPubMed
Helmich, R. C., Hallett, M., Deuschl, G., Toni, I., and Bloem, B. R. (2012). “Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?Brain 135(11): 3206–26.CrossRefGoogle ScholarPubMed
Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A., and Galarraga, E. (1997). “D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance,” J. Neurosci. 17(9): 3334–42.CrossRefGoogle ScholarPubMed
Houser, M. K., Soland, V. L., Bhatia, K. P., Quinn, N. P., and Marsden, C. D. (1999). “Paroxysmal kinesigenic choreoathetosis: a report of 26 patients,” J. Neurol. 246(2): 120–6.CrossRefGoogle ScholarPubMed
Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., and Graybiel, A. M. (1999). “Building neural representations of habits,” Science 286(5445): 1745–9.CrossRefGoogle ScholarPubMed
Kemp, J. M. and Powell, T. P. (1970). “The cortico-striate projection in the monkey,” Brain 93(3): 525–46.CrossRefGoogle ScholarPubMed
Kim, J. S. (2001). “Delayed onset mixed involuntary movements after thalamic stroke: clinical, radiological and pathophysiological findings,” Brain 124(Pt. 2): 299–309.CrossRefGoogle ScholarPubMed
Kuhn, A. A., Kempf, F., Brucke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., et al. (2008). “High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance,” J. Neurosci. 28(24): 6165–73.CrossRefGoogle ScholarPubMed
Kuhn, A. A., Kupsch, A., Schneider, G. H., and Brown, P. (2006). “Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease,” Eur. J. Neurosci. 23(7): 1956–60.CrossRefGoogle ScholarPubMed
LeDoux, M. S. and Brady, K. A. (2003). “Secondary cervical dystonia associated with structural lesions of the central nervous system,” Mov. Disord. 18(1): 60–9.CrossRefGoogle ScholarPubMed
Lee, M. S. and Marsden, C. D. (1994). “Movement disorders following lesions of the thalamus or subthalamic region,” Mov. Disord. 9(5): 493–507.CrossRefGoogle ScholarPubMed
Lenz, F. A., Suarez, J. I., Metman, L. V., Reich, S. G., Karp, B. I., Hallett, M., et al. (1998). “Pallidal activity during dystonia: somatosensory reorganisation and changes with severity,” J. Neurol. Neurosurg. Psychiatry 65(5): 767–70.CrossRefGoogle ScholarPubMed
Lewy, F. (1912). “Paralysis agitans. I. Pathologische Anatomie,” Handbuch der Neurologie 3: 920–33.Google Scholar
Lopez-Azcarate, J., Tainta, M., Rodriguez-Oroz, M. C., Valencia, M., Gonzalez, R., Guridi, J., et al. (2010). “Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease,” J. Neurosci. 30(19): 6667–77.CrossRefGoogle ScholarPubMed
Louis, E. D. (2011). “Essential tremor” in Weiner, W. J. and Tolosa, E. (eds.), Hyperkinetic Movement Disorders (Amsterdam: Elsevier), vol. 100, pp. 433–48.CrossRefGoogle Scholar
Louis, E. D., Faust, P. L., Vonsattel, J. P., Honig, L. S., Rajput, A., Robinson, C. A., et al. (2007). “Neuropathological changes in essential tremor: 33 cases compared with 21 controls,” Brain 130(Pt. 12): 3297–307.CrossRefGoogle ScholarPubMed
Lourenco, G., Meunier, S., Vidailhet, M., and Simonetta-Moreau, M. (2007). “Impaired modulation of motor cortex excitability by homonymous and heteronymous muscle afferents in focal hand dystonia,” Mov. Disord. 22(4): 523–7.CrossRefGoogle ScholarPubMed
Mallet, N., Le Moine, C., Charpier, S., and Gonon, F. (2005). “Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo,” J. Neurosci. 25(15): 3857–69.CrossRefGoogle ScholarPubMed
Marsden, C. D., Obeso, J. A., Zarranz, J. J., and Lang, A. E. (1985). “The anatomical basis of symptomatic hemidystonia,” Brain 108(Pt. 2): 463–83.CrossRefGoogle ScholarPubMed
Martinelli, P., Rizzo, G., Manners, D., Tonon, C., Pizza, F., Testa, C., et al. (2007). “Diffusion-weighted imaging study of patients with essential tremor,” Mov. Disord. 22(8): 1182–5.CrossRefGoogle ScholarPubMed
Menke, R. A., Scholz, J., Miller, K. L., Deoni, S., Jbabdi, S., Matthews, P. M., et al. (2009). “MRI characteristics of the substantia nigra in Parkinson’s disease: a combined quantitative T1 and DTI study,” Neuroimage 47(2): 435–41.CrossRefGoogle ScholarPubMed
Mink, J. W. and Thach, W. T. (1991). “Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement,” J. Neurophysiol. 65(2): 330–51.CrossRefGoogle ScholarPubMed
Mink, J. W. and Thach, W. T. (1993). “Basal ganglia intrinsic circuits and their role in behavior,” Curr. Opin. Neurobiol. 3(6): 950–7.CrossRefGoogle ScholarPubMed
Montastruc, J. L., Llau, M. E., Rascol, O., and Senard, J. M. (1994). “Drug-induced parkinsonism: a review,” Fundam. Clin. Pharmacol. 8(4): 293–306.CrossRefGoogle ScholarPubMed
Morishita, T., Foote, K. D., and Okun, M. S. (2010). “INPH and Parkinson disease: differentiation by levodopa response,” Nat. Rev. Neurol. 6(1): 52–6.CrossRefGoogle ScholarPubMed
Nakashima, K., Rothwell, J. C., Day, B. L., Thompson, P. D., Shannon, K., and Marsden, C. D. (1989). “Reciprocal inhibition between forearm muscles in patients with writer’s cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke,” Brain 112(Pt. 3): 681–97.CrossRefGoogle Scholar
Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). “Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey,” J. Neurophysiol. 84(1): 289–300.CrossRefGoogle ScholarPubMed
Nicola, S. M., Surmeier, J., and Malenka, R. C. (2000). “Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens,” Ann. Rev. Neurosci. 23:185–215.CrossRefGoogle ScholarPubMed
Nicoletti, G., Manners, D., Novellino, F., Condino, F., Malucelli, E., Barbiroli, B., et al. (2010). “Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor,” Neurology 74(12): 988–94.CrossRefGoogle ScholarPubMed
Niethammer, M., Carbon, M., Argyelan, M., and Eidelberg, D. (2011). “Hereditary dystonia as a neurodevelopmental circuit disorder: Evidence from neuroimaging,” Neurobiol. Dis. 42(2): 202–9.CrossRefGoogle ScholarPubMed
Obeso, J. A., Marin, C., Rodriguez-Oroz, C., Blesa, J., Benitez-Temino, B., Mena-Segovia, J., et al. (2008). “The basal ganglia in Parkinson’s disease: current concepts and unexplained observations,” Ann. Neurol. 64(Suppl. 2): S30–46.CrossRefGoogle ScholarPubMed
Ozkurt, T. E., Butz, M., Homburger, M., Elben, S., Vesper, J., Wojtecki, L., et al. (2011). “High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease,” Exp. Neurol. 229(2): 324–31.CrossRefGoogle Scholar
Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., Jung, R., et al. (2010). “Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice,” PLoS One 5(1): e8762.CrossRefGoogle ScholarPubMed
Parent, A. (1990). “Extrinsic connections of the basal ganglia,” Trends Neurosci. 13(7): 254–8.CrossRefGoogle ScholarPubMed
Parent, A. and Hazrati, L. N. (1993). “Anatomical aspects of information processing in primate basal ganglia,” Trends Neurosci. 16(3): 111–16.CrossRefGoogle ScholarPubMed
Pedrosa, D. J., Reck, C., Florin, E., Pauls, K. A., Maarouf, M., Wojtecki, L., et al. (2012). “Essential tremor and tremor in Parkinson’s disease are associated with distinct ‘tremor clusters’ in the ventral thalamus,” Exp. Neurol. 237(2): 435–43.CrossRefGoogle ScholarPubMed
Perl, D. P. (2007). “The neuropathology of parkinsonism” in Weiner, W. J. and Tolosa, E. (eds.), Parkinson’s Disease and Related Disorders (Amsterdam: Elsevier), Pt. I, vol. 83.Google Scholar
Pollok, B., Gross, J., Dirks, M., Timmermann, L., and Schnitzler, A. (2004). “The cerebral oscillatory network of voluntary tremor,” J. Physiol. 554(Pt. 3): 871–8.CrossRefGoogle ScholarPubMed
Pollok, B., Makhloufi, H., Butz, M., Gross, J., Timmermann, L., Wojtecki, L., et al. (2009). “Levodopa affects functional brain networks in Parkinsonian resting tremor,” Mov. Disord. 24(1): 91–8.CrossRefGoogle ScholarPubMed
Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). “Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease,” Science 276(5321): 2045–7.CrossRefGoogle ScholarPubMed
Poole, A. C., Thomas, R. E., Andrews, L. A., McBride, H. M., Whitworth, A. J., and Pallanck, L. J. (2008). “The PINK1/Parkin pathway regulates mitochondrial morphology,” Proc. Natl. Acad. Sci. USA 105(5): 1638–43.CrossRefGoogle ScholarPubMed
Priori, A., Berardelli, A., Mercuri, B., and Manfredi, M. (1995). “Physiological effects produced by botulinum toxin treatment of upper limb dystonia. Changes in reciprocal inhibition between forearm muscles,” Brain 118(Pt. 3): 801–7.CrossRefGoogle ScholarPubMed
Putzki, N., Stude, P., Konczak, J., Graf, K., Diener, H. C., and Maschke, M. (2006). “Kinesthesia is impaired in focal dystonia,” Mov. Disord. 21(6): 754–60.CrossRefGoogle ScholarPubMed
Quartarone, A., Bagnato, S., Rizzo, V., Siebner, H. R., Dattola, V., Scalfari, A., et al. (2003). “Abnormal associative plasticity of the human motor cortex in writer’s cramp,” Brain 126(Pt. 12): 2586–96.CrossRefGoogle ScholarPubMed
Quattrone, A., Cerasa, A., Messina, D., Nicoletti, G., Hagberg, G. E., Lemieux, L., et al. (2008). “Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study,” AJNR Am. J. Neuroradiol. 29(9): 1692–7.CrossRefGoogle ScholarPubMed
Rajput, A., Robinson, C. A., and Rajput, A. H. (2004). “Essential tremor course and disability: A clinicopathologic study of 20 cases,” Neurology 62(6): 932–6.CrossRefGoogle ScholarPubMed
Reck, C., Florin, E., Wojtecki, L., Krause, H., Groiss, S., Voges, J., et al. (2009). “Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson’s disease,” Eur. J. Neurosci. 29(3): 599–612.CrossRefGoogle ScholarPubMed
Reck, C., Himmel, M., Florin, E., Maarouf, M., Sturm, V., Wojtecki, L., et al. (2010). “Coherence analysis of local field potentials in the subthalamic nucleus: differences in parkinsonian rest and postural tremor,” Eur. J. Neurosci. 32(7): 1202–14.CrossRefGoogle ScholarPubMed
Ridding, M. C., Sheean, G., Rothwell, J. C., Inzelberg, R., and Kujirai, T. (1995). “Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia,” J. Neurol. Neurosurg. Psychiatry 59(5): 493–8.CrossRefGoogle ScholarPubMed
Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., and Marsden, C. D. (1989). “Mitochondrial complex I deficiency in Parkinson’s disease,” Lancet Neurol. 1(8649): 1269.Google ScholarPubMed
Schnitzler, A., Munks, C., Butz, M., Timmermann, L., and Gross, J. (2009). “Synchronized brain network associated with essential tremor as revealed by magnetoencephalography,” Mov. Disord. 24(11): 1629–35.CrossRefGoogle ScholarPubMed
Sciamanna, G., Hollis, R., Ball, C., Martella, G., Tassone, A., Marshall, A., et al. (2012). “Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein torsin A,” Neurobiol. Dis. 47(3): 416–27.CrossRefGoogle Scholar
Sciamanna, G., Tassone, A., Martella, G., Mandolesi, G., Puglisi, F., Cuomo, D., et al. (2011). “Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia,” PLoS One 6(9): e24261.CrossRefGoogle ScholarPubMed
Segawa, M. (2011). “Dopa-responsive dystonia,” Handb. Clin. Neurol. 100: 539–57.CrossRefGoogle ScholarPubMed
Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S., and Kordower, J. H. (2012a). “Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases,” Mov. Disord. 27(6): 716–19.CrossRefGoogle Scholar
Shannon, K. M., Keshavarzian, A., Mutlu, E., Dodiya, H. B., Daian, D., Jaglin, J. A., et al. (2012b). “Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease,” Mov. Disord. 27(6): 709–15.CrossRefGoogle ScholarPubMed
Shill, H. A., Adler, C. H., Sabbagh, M. N., Connor, D. J., Caviness, J. N., Hentz, J. G., et al. (2008). “Pathologic findings in prospectively ascertained essential tremor subjects,” Neurology 70(16 Pt. 2): 1452–5.CrossRefGoogle ScholarPubMed
Shin, D. H., Han, B. S., Kim, H. S., and Lee, P. H. (2008). “Diffusion tensor imaging in patients with essential tremor,” AJNR Am. J. Neuroradiol. 29(1): 151–3.CrossRefGoogle ScholarPubMed
Sohn, Y. H. and Hallett, M. (2004). “Disturbed surround inhibition in focal hand dystonia,” Ann. Neurol. 56(4): 595–9.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. (1997). “Alpha-synuclein in Lewy bodies,” Nature 388(6645): 839–40.CrossRefGoogle ScholarPubMed
Stefansson, H., Steinberg, S., Petursson, H., Gustafsson, O., Gudjonsdottir, I. H., Jonsdottir, G. A., et al. (2009). “Variant in the sequence of the LINGO1 gene confers risk of essential tremor,” Nat. Genet. 41(3): 277–9.CrossRefGoogle ScholarPubMed
Südmeyer, M., Pollok, B., Hefter, H., Gross, J., Butz, M., Wojtecki, L., et al. (2006). “Synchronized brain network underlying postural tremor in Wilson’s disease,” Mov. Disord. 21(11): 1935–40.CrossRefGoogle ScholarPubMed
Suls, A., Dedeken, , Goffin, K., Van Esch, H., Dupont, P., Cassiman, D., et al. (2008). “Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1,” Brain 131(Pt. 7): 1831–44.CrossRefGoogle ScholarPubMed
Tamura, Y., Matsuhashi, M., Lin, P., Ou, B., Vorbach, S., Kakigi, R., et al. (2008). “Impaired intracortical inhibition in the primary somatosensory cortex in focal hand dystonia,” Mov. Disord. 23(4): 558–65.CrossRefGoogle ScholarPubMed
Thobois, S., Ballanger, B., Xie-Brustolin, J., Damier, P., Durif, F., Azulay, J. P., et al. (2008). “Globus pallidus stimulation reduces frontal hyperactivity in tardive dystonia,” J. Cereb. Blood Flow Metab. 28(6): 1127–38.CrossRefGoogle ScholarPubMed
Thompson, P. D. and Marsden, C. D. (1987). “Gait disorder of subcortical arteriosclerotic encephalopathy: Binswanger’s disease,” Mov. Disord. 2(1): 1–8.CrossRefGoogle ScholarPubMed
Timmermann, L., Gross, J., Butz, M., Kircheis, G., Haussinger, D., and Schnitzler, A. (2003b). “Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling,” Neurology 61(5): 689–92.CrossRefGoogle ScholarPubMed
Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H. J., and Schnitzler, A. (2003a). “The cerebral oscillatory network of parkinsonian resting tremor,” Brain 126(Pt. 1): 199–212.CrossRefGoogle ScholarPubMed
Timmermann, L., Gross, J., Kircheis, G., Haussinger, D., and Schnitzler, A. (2002). “Cortical origin of mini-asterixis in hepatic encephalopathy,” Neurology 58(2): 295–8.CrossRefGoogle ScholarPubMed
Tinazzi, M., Fiaschi, A., Frasson, E., Fiorio, M., Cortese, F., and Aglioti, S. M. (2002). “Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation,” Mov. Disord. 17(2): 333–8.CrossRefGoogle ScholarPubMed
Tinazzi, M., Priori, A., Bertolasi, L., Frasson, E., Mauguiere, F., and Fiaschi, A. (2000). “Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow,” Brain 123(Pt. 1): 42–50.CrossRefGoogle ScholarPubMed
Tofaris, G. K., Garcia Reitböck, P., Humby, T., Lambourne, S. L., O’Connell, M., Ghetti, B., et al. (2006). “Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1–120): implications for Lewy body disorders,” J. Neurosci. 26(15): 3942–50.CrossRefGoogle ScholarPubMed
Tretiakoff, C. (1919). Contribution à l’Etude de l’Anatomie pathologique du Locus Niger, Thèse de Paris, no. 293.
Vitek, J. L., Chockkan, V., Zhang, J. Y., Kaneoke, Y., Evatt, M., DeLong, M. R., et al. (1999). “Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus,” Ann. Neurol. 46(1): 22–35.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A. A., Lado, F., Fazzini, E., et al. (1996). “Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography,” Neurology 46(5): 1359–70.CrossRefGoogle ScholarPubMed
Waters, C. H., Faust, P. L., Powers, J., Vinters, H., Moskowitz, C., Nygaard, T., et al. (1993). “Neuropathology of lubag (x-linked dystonia parkinsonism),” Mov. Disord. 8(3): 387–90.CrossRefGoogle Scholar
Weinberger, M., Hutchison, W. D., and Dostrovsky, J. O. (2009). “Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia?Exp. Neurol. 219(1): 58–61.CrossRefGoogle ScholarPubMed
Wenning, G. K., Kiechl, S., Seppi, K., Muller, J., Hogl, B., Saletu, M., Rungger, G., Gasperi, A., Willeit, J., and Poewe, W. (2005). “Prevalence of movement disorders in men and women aged 50–89 years (Bruneck Study cohort): a population-based study,” Lancet Neurol. 4(12): 815–20.CrossRefGoogle ScholarPubMed
Yokoi, F., Dang, M. T., Li, J., Standaert, D. G., and Li, Y. (2011). “Motor deficits and decreased striatal dopamine receptor 2 binding activity in the striatum-specific Dyt1 conditional knockout mice,” PLoS One 6(9): e24539.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×