Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-06T03:03:42.549Z Has data issue: false hasContentIssue false

7 - The baby with a suspected seizure

from Section III - Solving clinical problems and interpretation of test results

Published online by Cambridge University Press:  07 December 2009

Janet M. Rennie
Affiliation:
Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Cornelia F. Hagmann
Affiliation:
Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Nicola J. Robertson
Affiliation:
Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Janet M. Rennie
Affiliation:
University College London
Cornelia F. Hagmann
Affiliation:
University College London
Nicola J. Robertson
Affiliation:
University College London
Get access

Summary

Clinical manifestations of neonatal seizure

All those involved in the care of babies need to maintain a high index of suspicion regarding the possibility of seizures. Not only are seizures common in the first few days of life, but they are also difficult to diagnose because the clinical manifestations are varied, subtle, and unlike those seen at other times of life. The diagnosis of seizure should be considered if a baby makes odd repetitive stereotyped movements of the limbs or face. Subtle seizures can manifest as repetitive blinking, chewing, eye-rolling or darting tongue movements. Seizures can also involve a stare without blinking, forced eye deviation, peculiar limb postures, apnea or a fixed smile. Ocular manifestations are common, and eye closure during a suspicious event makes the diagnosis of seizure less likely, although it does not exclude it completely [1]. Myoclonic jerks can be normal in sleep but myoclonic epilepsy does occasionally manifest in the neonatal period. Clinical seizures are often short-lived in babies; typically the baby becomes still, there is a change in breathing pattern (sometimes apnea), and a change in level of alertness followed by subtle repetitive movements involving the face or limbs. The whole episode may be over in less than a minute, but the same pattern does tend to recur, in which case it becomes more suspicious.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauder, F, Wolhrab, G, Schmitt, B. Neonatal seizures: eyes open or closed?Epilepsia 2007; 48 (2): 394–6.CrossRefGoogle ScholarPubMed
Malone, A, Boylan, G, Ryan, CA, Connolly, S. Ability of medical personnel to accurately differentiate neonatal seizures from non-seizure movements. Clin Neurophysiol 2006; 117 (S1): S1.CrossRefGoogle Scholar
Murray, DM, Boylan, GB, Ali, I, Ryan, CA, Murphy, BP, Connolly, S. Defining the gap between electrographic seizure burden, clinical expression, and staff recognition of neonatal seizures. Arch Dis Child 2008; in press.CrossRefGoogle ScholarPubMed
Clancy, RR, Ledigo, A, Lewis, D. Occult neonatal seizures. Epilepsia 1988; 29: 256–61.CrossRefGoogle ScholarPubMed
Bye, AME, Flanagan, D. Spatial and temporal characteristics of neonatal seizures. Epilepsia 1995; 36: 1009–16.CrossRefGoogle ScholarPubMed
Holmes, GL, Ben-Ari, Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res 2001; 49 (3): 320–5.CrossRefGoogle ScholarPubMed
Holmes, GL. Effects of seizures on brain development: lessons from the laboratory. Pediatr Neurol 2005; 33: 1–11.CrossRefGoogle ScholarPubMed
Rennie, JM, Boylan, G. Treatment of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 2007; 92 (2): 148–50.CrossRefGoogle ScholarPubMed
Wasterlain, CG. Recurrent seizures in the developing brain are harmful. Epilepsia 1997; 38 (6): 728–34.CrossRefGoogle ScholarPubMed
Holmes, GL. Seizure-induced neuronal injury. Neurology 2002; 59: S3–S6.CrossRefGoogle ScholarPubMed
Lanska, MJ, Lanska, DJ, Baumann, RJ, Kryscio, RJ. A population-based study of neonatal seizures in Fayette county, Kentucky. Neurology 1995; 45: 724–32.CrossRefGoogle ScholarPubMed
Lanska, MJ, Lanska, DJ. Neonatal seizures in the United States: results of the National Hospital Discharge Survey, 1980–1991. Neuroepidemiology 1996; 15: 117–25.CrossRefGoogle ScholarPubMed
Ronen, GM, Penney, S, Andrews, W. The epidemiology of clinical neonatal seizures in Newfoundland: a population based study. J Pediatr 1999; 134: 71–5.CrossRefGoogle ScholarPubMed
Saliba, RM, Annegers, JF, Waller, DK, Tyson, JE, Mizrahi, EM. Incidence of neonatal seizures in Harris County, Texas, 1992–1994. Am J Epidemiol 1999; 150: 763–9.CrossRefGoogle ScholarPubMed
Scher, MS, Aso, K, Beggarly, ME, Hamid, MY, Steppe, DA, Painter, MJ. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 1993; 91: 128–34.Google ScholarPubMed
Connell, JA, Oozeer, R, Vries, LS, Dubowitz, LMS, Dubowitz, V. Continuous EEG monitoring of neonatal seizures, diagnostic and prognostic considerations. Arch Dis Child 1989; 64: 452–8.CrossRefGoogle ScholarPubMed
Stiskal, JA, Kulin, N, Koren, G, Ho, T, Ito, S. Neonatal paroxetine withdrawal syndrome. Arch Dis Child 2001; 84: F134–F135.CrossRefGoogle ScholarPubMed
Sanz, EJ, de-las-Cuevas, C, Kiuru, A, Bate, A, Edwards, R. Selective serotonin reuptake inhibitors in pregnant women and neonatal withdrawal syndrome: a database analysis. Lancet 2005; 365: 482–7.CrossRefGoogle ScholarPubMed
Moses-Kolko, EL, Bogen, D, Perel, Jet al. Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. J Am Med Assoc 2005; 293 (19): 2372–83.CrossRefGoogle ScholarPubMed
Vivo, D, Garcia-Alvarez, M, Ronen, G, Trifiletti, R. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhacia, seizures and developmental delay. New Engl J Med 1991; 325: 703–9.CrossRefGoogle Scholar
Clancy, RR, Ledigo, A. The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia 1987; 28: 537–41.CrossRefGoogle ScholarPubMed
Scher, MS, Hamid, MY, Steppe, DA, Beggarly, ME, Painter, MJ. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 1993; 34: 284–8.CrossRefGoogle ScholarPubMed
Patrizi, S, Holmes, GL, Orzalesi, M, Allemand, F. Neonatal seizures: characteristics of EEG ictal activity in preterm and fullterm infants. Brain Dev 2003; 25: 427–37.CrossRefGoogle ScholarPubMed
McBride, MC, Laroia, N, Guillet, R. Electrographic seizures in neonates correlate with poor neurodevelopmental outcome. Neurology 2000; 55: 506–13.CrossRefGoogle ScholarPubMed
Alba, GO, Mora, EU, Valdez, JM, Garcia, DV, Crespo, FV. Neonatal status epilepticus 11: electroencephalographic aspects. Clin Electroencephalogr 1984; 15 (4): 197–200.CrossRefGoogle Scholar
Boylan, GB, Murray, DM, Greene, BR, Ryan, CA, MacNamara, B, Connolly, S. What is neonatal status epilepticus?Clin Neurophysiol 2006; 117 (S1): 1.CrossRefGoogle Scholar
Shewmon, DA. What is a neonatal seizure? Problems in definition and qualification for investigative and clinical purposes. J Clin Neurophysiol 1990; 7: 315–68.CrossRefGoogle Scholar
Oliveira, AJ, Nunes, ML, Haertel, LM, Reis, FM, Da Costa, JC. Duration of rhythmic EEG patterns in neonates: new evidence for clinical and prognostic significance of brief rhythmic discharges. Clin Neurophysiol 2000; 111: 1646–53.CrossRefGoogle ScholarPubMed
Weiner, SP, Painter, MJ, Geva, D, Guthrie, RD, Scher, MS. Neonatal seizures electroclinical dissociation. Pediatr Neurol 1991; 7: 363–8.CrossRefGoogle ScholarPubMed
Scher, MS, Alvin, J, Gaus, L, Minnigh, B, Painter, MJ. Uncoupling of electrical and clinical expression of neonatal seizures after anti epileptic drugs. Pediatr Neurol 1994; 11: 83.CrossRefGoogle Scholar
Scher, MS, Alvin, J, Gaus, L, Minnigh, B, Painter, MJ. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol 2003; 28: 277–80.CrossRefGoogle ScholarPubMed
Boylan, GB, Rennie, JM, Pressler, RM, Wilson, G, Morton, M, Binnie, CD. Phenobarbitone, neonatal seizures and video-EEG. Arch Dis Child 2002; 86: 165–170.CrossRefGoogle ScholarPubMed
Mizrahi, EM, Kellaway, P. Characterization and classification of neonatal seizures. Neurology 1987; 37: 1837–44.CrossRefGoogle ScholarPubMed
Boylan, GB, Rennie, JM. Automated neonatal seizure detection. Clin Neurophysiol 2006; 117: 1412–13.CrossRefGoogle ScholarPubMed
Faul, S, Boylan, G, Connolly, S, Marnane, L, Lightbody, G. An evaluation of automated neonatal seizure detection methods. Clin Neurophysiol 2005; 116: 1533–41.CrossRefGoogle ScholarPubMed
Greene, BR, Boylan, GB, Reilly, RB, Chazal, P, Connolly, S. Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin Neurophysiol 2007; e pub ahead of print.CrossRefGoogle ScholarPubMed
Greene, BR, Chazal, P, Boylan, GB, Connolly, S, Reilly, RB. Electrocardiogram based neonatal seizure detection. IEEE Trans Biomed Eng 2007; 54 (4): 673–82.CrossRefGoogle ScholarPubMed
Glauser, TA, Clancy, RR. Adequacy of routine EEG examinations in neonates with clinically suspected seizures. J Child Neurol 1992; 7: 215–20.CrossRefGoogle ScholarPubMed
Sheth, RD. Electroencephalogram confirmatory rate in neonatal seizures. Pediatr Neurol 1999; 20: 27–30.CrossRefGoogle ScholarPubMed
Rennie, JM, Chorley, G, Boylan, GB, Pressler, R, Nguyen, Y, Hooper, R. Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch Dis Child 2004; 891: 37–40.CrossRefGoogle Scholar
Rennie JM. Seizures. In: Rennie, JM, ed. Roberton's Textbook of Neonatology, 4th edn. Edinburgh, Elsevier, 2005; 1105–20.Google Scholar
Estan, J, Hope, PL. Unilateral neonatal cerebral infarction in full term infants. Arch Dis Child 1997; 76: F88–F93.CrossRefGoogle ScholarPubMed
Levy, SR, Abroms, IF, Marshall, PC, Rosquete, EE. Seizures and cerebral infarction in the full term newborn. Ann Neurol 1985; 17: 366–70.CrossRefGoogle ScholarPubMed
Clancy, R, Malin, S, Laraque, D, Baumgart, S, Younkin, D. Focal motor seizures heralding stroke in full term neonates. Am J Dis Child 1985; 139: 601–6.Google ScholarPubMed
Mercuri, E, Cowan, F, Rutherford, M, Acolet, D, Pennock, J, Dubowitz, LS. Ischaemic and haemorrhagic brain lesions in newborns with seizures and normal Apgar scores. Arch Dis Child 1995; 73: F67–F75.CrossRefGoogle ScholarPubMed
Mercuri, E, Cowan, F. Cerebral infarction in the newborn infant: review of the literature and personal experience. Eur J Paediatr Neurol 1999; 3: 255–63.CrossRefGoogle ScholarPubMed
Ramaswamy, V, Miller, SP, Barkovich, AJ, Partridge, JC, Ferriero, DM. Perinatal stroke in term infants with neonatal encephalopathy. Neurology 2004; 62: 2088–91.CrossRefGoogle ScholarPubMed
Nelson, KB, Lynch, JK. Stroke in newborn infants. Lancet Neurol 2004; 3: 150–8.CrossRefGoogle ScholarPubMed
Wu, YW, March, WM, Croen, , Grether, JK, Escobar, GJ, Newman, TB. Perinatal stroke in children with motor impairment: a population-based study. Pediatrics 2004; 114 (3): 612–19.CrossRefGoogle ScholarPubMed
Golomb, MR, MacGregor, DL, Domi, Tet al. Presumed pre- or perinatal arterial ischemic stroke: risk factors and outcomes. Ann Neurol 2001; 50: 163–8.CrossRefGoogle ScholarPubMed
Amato, M, Herschkowitz, N, Huber, P. Prenatal stroke suggested by intrauterine ultrasound and confirmed by magnetic resonance imaging. Neuropediatrics 1991; 22: 100–2.CrossRefGoogle ScholarPubMed
Vries, LS, Groenendaal, F, Eken, P, Haastert, IC, Rademaker, KJ, Meiners, LC. Infarcts in the vascular distribution of the middle cerebral artery in preterm and fullterm infants. Neuropediatrics 1997; 28: 88–96.CrossRefGoogle ScholarPubMed
Miller, V. Neonatal cerebral infarction. Semin Pediatr Neurol 2000; 7 (4): 278–88.CrossRefGoogle ScholarPubMed
Chalmers, EA. Perinatal stroke: risk factors and management. Br J Haematol 2005; 130: 333–43.CrossRefGoogle ScholarPubMed
Nelson, K. Perinatal ischemic stroke. Stroke 2007; 38: 742–5.CrossRefGoogle ScholarPubMed
Govaert, P, Mattys, E, Zecic, A, Roelens, F, Oostra, A, Vanzielghem, B. Perinatal cortical infarction within middle cerebral artery trunks. Arch Dis Child 2000; 82: F59–F63.CrossRefGoogle ScholarPubMed
Lee, J, Croen, , Backstrand, KHet al. Maternal and infant characteristics associated with perinatal arterial stroke in the infant. J Am Med Assoc 2005; 293 (6): 723–9.CrossRefGoogle ScholarPubMed
Schulzke, S, Weber, P, Luetsschg, J, Fahnenstich, H. Incidence and diagnosis of unilateral arterial cerebral infarction in newborn infants. J Perinat Med 2005; 33: 170–5.CrossRefGoogle ScholarPubMed
Cowan, F, Mercuri, E, Groenendaal, Fet al. Does cranial ultrasound imaging identify arterial cerebral infarction in term neonates?Arch Dis Child 2005; 90 (3): F252–F256.CrossRefGoogle ScholarPubMed
Wang, LW, Huang, CC, Yeh, TF. Major brain lesions detected on sonographic screening of apparently normal term neonates. Neuroradiology 2004; 46: 368–73.Google ScholarPubMed
Netter, FH. Atlas of Human Anatomy. London, Ciba Geigy Ltd.
Abels, L, Lequin, M, Govaert, P. Sonographic templates of newborn perforator stroke. Paediatr Radiol 2006; 36: 663–9.CrossRefGoogle ScholarPubMed
Sreenan, C, Bhargava, R, Robertson, CMT. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr 2000; 137: 351–5.CrossRefGoogle ScholarPubMed
Veber, G, Monagle, P, Chan, A, et al. Prothrombotic disorders in infants and children with cerebral thromboembolism. Arch Neurol 1998; 55: 1539–43.Google Scholar
Kraus, FT, Acheen, VI. Fetal thrombotic vasculopathy in the placenta: cerebral thrombi and infarcts, coagulopathies, and cerebral palsy. Human Pathol 1999; 30: 759–69.CrossRefGoogle ScholarPubMed
Klesh, KW, Murphy, TF, Scher, MS, Buchanan, , Maxwell, EP, Guthrie, RD. Cerebral infarction in persistent pulmonary hypertension of the newborn. Am J Dis Child 1987; 141: 852–7.Google ScholarPubMed
Scher, MS, Klesh, KM, Murphy, TE, Guthrie, RD. Seizures and infarction in neonates with persistent pulmonary hypertension. Paediatr Neurol 1986; 2: 332–9.CrossRefGoogle ScholarPubMed
Lago, P, Rebsamen, S, Clancy, Ret al. MRI, MRA, and neurodevelopmental outcome following neonatal ECMO. Pediatr Neurol 1995; 12: 294–304.CrossRefGoogle ScholarPubMed
Jarjour, IT, Ahdab-Barmada, M. Cerebrovascular lesions in infants and children dying after extracorporeal membrane oxygenation. Pediatr Neurol 1994; 10: 13–19.CrossRefGoogle ScholarPubMed
Ruff, RL, Shaw C-, M, Beckwith, JB, Iozzo, RV. Cerebral infarction complicating umbilical vein catheterization. Ann Neurol 1979; 6 (1): 85.CrossRefGoogle ScholarPubMed
Fullerton, HJ, Johnston, SC, Smith, WS. Arterial dissection and stroke in children. Neurology 2001; 57: 1155–60.CrossRefGoogle ScholarPubMed
Camacho, A, Villarejo, A, Aragon, AM, Simon, R, Mateos, F. Spontaneous carotid and vertebral artery dissection in children. Pediatr Neurol 2001; 25: 250–3.CrossRefGoogle ScholarPubMed
Topcuoglu, MA, Pryor, JC, Ogilvy, CS, Kistler, JP. Cerebral vasospasm following subarachnoid hemorrhage. Curr Treat Options Cardiovasc Med 2002; 4: 373–84.CrossRefGoogle ScholarPubMed
Govaert, P, Vanhaesebrouck, P, Praeter, C. Traumatic neonatal intracranial bleeding and stroke. Arch Dis Child 1992; 67: 840–5.CrossRefGoogle ScholarPubMed
Roessmann, U, Miller, Tyler R. Thrombosis of the middle cerebral artery associated with birth trauma. Neurology 1980; 30: 889–92.CrossRefGoogle ScholarPubMed
Alfonso, I, Prieto, G, Vasconcellos, E, Aref, K, Pacheco, E, Yelin, K. Internal carotid artery thrombus: an underdiagnosed source of brain emboli in neonates. J Child Neurol 2001; 16 (6): 446–7.CrossRefGoogle ScholarPubMed
Mann, CI, Dietrich, RB, Schrader, MT, Peck, WW, Demos, DS, Bradley, WG. Posttraumatic carotid artery dissection in children: evaluation with MR angiography. AJR Am J Roentgenol 1993; 160: 134–6.CrossRefGoogle ScholarPubMed
Lequin, MH, Peeters, EAJ, Holscher, HC, Krijger, R, Govaert, P. Arterial infarction caused by carotid artery dissection in the neonate. Eur J Paediatr Neurol 2004; 8: 155–60.CrossRefGoogle ScholarPubMed
Gupta, M, Dinakaran, S, Chan, TK. Congenital Horner syndrome and hemiplegia secondary to carotid dissection. J Pediatr Ophthalmol Strabismus 2005; 42 (2): 122–4.Google ScholarPubMed
Gunther, G, Junker, R, Strater, Ret al. Symptomatic ischemic stroke in full-term neonates role of acquired and genetic prothrombotic risk factors. Stroke 2000; 31: 2437–11.CrossRefGoogle ScholarPubMed
Golomb, MR. The contribution of prothrombotic disorders to peri- and neonatal ischemic stroke. Semin Thromb Hemost 2003; 29 (4): 415–24.Google ScholarPubMed
Kenet, G, Sadetzki, S, Murad, Het al. Factor V Leiden and antiphospholipid antibodies are significant risk factors for ischemic stroke in children. Stroke 2001; 31: 1283–8.CrossRefGoogle Scholar
Zenz, W, Bodo, Z, Plotho, Jet al. Factor V Leiden and prothrombin gene G 20210. A variant in children with ischemic stroke. Thromb Haemost 1998; 80: 763–6.Google Scholar
Lynch, JK, Nelson, KB, Curry, CJ, Grether, JK. Cerebrovascular disorders in children with the factor V Leiden mutation. J Child Neurol 2001; 16: 735–44.CrossRefGoogle ScholarPubMed
Lynch, JK, Han, CJ, Nee, , Nelson, KB. Prothrombotic factors in children with stroke or porencephaly. Pediatrics 2005; 116 (2): 447–53.CrossRefGoogle ScholarPubMed
Nowak-Gottl, U, Strater, R, Heinecke, Aet al. Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin, and methylenetetrahydrofolate reductase are risk factors of spontaneous ischemic stroke in childhood. Blood 1999; 94 (11): 3678–82.Google ScholarPubMed
Gunther, G, Junker, R, Strater, Ret al. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke 2001; 31: 2437–11.CrossRefGoogle Scholar
Miller, SP, Wu, YW, Lee, Jet al. Candidate gene polymorphisms do not differ between newborns with stroke and normal controls. Stroke 2006; 37: 2678–83.CrossRefGoogle Scholar
Hogeveen, M, Blom, HJ, Amerongen, M, Boogmans, M, Beynum, IM, Bor, M. Hyperhomocystinemia as risk factor for ischemic and hemorrhagic stroke in newborn infants. J Paediatr 2002; 141: 429–31.CrossRefGoogle Scholar
Nowak-Gottl, U, Kosch, A, Schlegel, N. Thromboembolism in newborns, infants and children. Thromb Haemost 2001; 86: 464–74.Google ScholarPubMed
Silver, RK, MacGregor, SN, Pasternak, JF, Neely, SE. Fetal stroke associated with elevated maternal anticardiolipin antibodies. Obstet Gynecol 1992; 80: 497–9.Google ScholarPubMed
Akanli, LF, Trasi, SS, Thuraisamy, Ket al. Neonatal middle cerebral artery infarction: association with elevated maternal anticardiolipin antibodies. Am J Perinatol 1998; 15: 399–402.CrossRefGoogle ScholarPubMed
Chow, G, Mellor, D. Neonatal cerebral ischaemia with elevated maternal and infant anticardiolipin antibodies. Dev Med Child Neurol 2000; 42: 412–13.CrossRefGoogle ScholarPubMed
Klerk, OL, Vries, TW, Sinnige, LGF. An unusual cause of neonatal seizures in a newborn infant. Paediatrics 1997; 100 (4): e8.CrossRefGoogle Scholar
Nelson, KB, Dambrosia, JM, Grether, JK, Phillips, TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 1998; 44: 665–75.CrossRefGoogle ScholarPubMed
Moazzam, A, Riaz, M, Brennen, MD. Neonatal gangrene in an extremity of an infant of a diabetic mother. Br J Obstet Gynaecol 2003; 110: 75–6.CrossRefGoogle Scholar
Benders, MJNL, Groenendaal, F, Uiterwaal, CPMet al. Maternal and infant characteristics associated with perinatal arterial stroke. Stroke 2007; 38: 1759–6.CrossRefGoogle ScholarPubMed
Filipek, PA, Krishnamoorthy, KS, Davis, KR, Kuehnle, K. Focal cerebral infarction in the newborn: a distinct entity. Pediatr Neurol 1987; 3: 141–7.CrossRefGoogle ScholarPubMed
Koelfen, W, Freund, M, Varnholt, V. Neonatal stroke involving middle cerebral artery in the term infants: clinical presentation, EEG and imaging study, and outcome. Dev Med Child Neurol 1995; 37: 204–12.CrossRefGoogle Scholar
Mercuri, E, Rutherford, M, Cowan, Fet al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics 1999; 103: 39–46.CrossRefGoogle ScholarPubMed
Rando, T, Ricci, D, Mercuri, Eet al. Periodic lateralized epileptiform discharges (PLEDs) as early indicators of stroke in full term newborns. Neuropediatrics 2000; 31: 202–5.CrossRefGoogle Scholar
Golomb, MR, Dick, PT, MacGregor, DL, Armstrong, DC, deVeber, GA. Cranial ultrasonography has a low sensitivity for detecting arterial ischemic stroke in term neonates. J Child Neurol 2003; 18: 98–103.CrossRefGoogle Scholar
Coker, SB, Beltran, RS, Myers, TF, Hmura, L. Neonatal stroke: description of patients and investigation into pathogenesis. Pediatr Neurol 1988; 4: 219–23.CrossRefGoogle ScholarPubMed
Perlman, JM, Rollins, NK, Evans, D. Neonatal stroke – clinical characteristics and cerebral blood flow velocity measurements. Pediatr Neurol 1994; 11: 281–4.CrossRefGoogle ScholarPubMed
Cowan, FM, Pennock, JM, Hanrahan, J, Manji, K, Edwards, AD. Early detection of cerebral infarction and hypoxic ischaemic encephalopathy in neonates using diffusion weighted MRI. Neuropediatrics 1994; 25: 172–5.CrossRefGoogle Scholar
Venkataraman, A, Kingsley, PB, Kalina, Pet al. Newborn brain infarction: clinical aspects and magnetic resonance imaging. CNS Spectrums 2004; 9 (6): 436–44.Google ScholarPubMed
Lovblad, K, Ruoss, K, Guzman, R, Schroth, G, Fusch, C. Diffusion-weighted MRI of middle cerebral artery stroke in a newborn. Pediatr Radiol 2001; 31: 374–6.Google Scholar
Kuker, W, Mohrle, S, Mader, I, Schoning, M. MRI for the management of neonatal cerebral infarctions: importance of timing. Childs Nerv Syst 2004; 20: 742–8.Google ScholarPubMed
Mader, I, Schoning, M, Klose, U, Kuker, W. Neonatal cerebral infarction diagnosed by diffusion-weighted MRI. Pseudonormalization occurs early. Stroke 2002; 33: 1142–5.CrossRefGoogle ScholarPubMed
Vries, LS, Grond, J, Haastert, IC, Groenendaal, F. Prediction of outcome in newborn infants with arterial ischaemic stroke using diffusion weighted magnetic resonance imaging. Neuropaediatrics 2005; 36: 12–20.CrossRefGoogle ScholarPubMed
Giroud, M, Fayolle, H, Martin, Det al. Late thalamic atrophy in infarction of the middle cerebral artery territory in neonates. Child Nerv Syst 1995; 11: 133–6.CrossRefGoogle ScholarPubMed
Kurnik, K, Kosch, A, Strater, R, Schobess, R, Heller, C, Nowak-Gottl, U. Recurrent thromboembolism in infants and children suffering from symptomatic neonatal arterial stroke. A prospective follow-up study. Stroke 2003; 34: 2887–93.CrossRefGoogle ScholarPubMed
Nowak-Gottl, U, Junker, R, Kreuz, Wet al. Risk of recurrent venous thrombosis in children with combined prothrombotic risk factors. Blood 2001; 97: 858–62.CrossRefGoogle ScholarPubMed
Wulfeck, BB, Trauner, DA, Tallal, PA. Neurological, cognitive, and linguistic features of infants after early stroke. Pediatr Neurol 1991; 7: 266–9.CrossRefGoogle Scholar
Sran, SK, Baumann, RJ. Outcome of neonatal strokes. Am J Dis Child 1988; 142: 1086–8.Google ScholarPubMed
Jan, MMS, Camfield, PR. Outcome of neonatal stroke in full-term infants without significant birth asphyxia. Eur J Pediatr 1998; 157: 846–8.CrossRefGoogle ScholarPubMed
Veber, GA, MacGregor, D, Curtis, R, Mayank, S. Neurologic outcome in survivors of childhood arterial ischemic stroke and sinovenous thrombosis. J Child Neurol 2000; 15: 316–24.Google Scholar
Boardman, JP, Ganesan, V, Rutherford, MA, Saunders, , Mercuri, E, Cowan, F. Magnetic resonance image correlates of hemiparesis after neonatal and childhood middle cerebral artery stroke. Pediatrics 2005; 115 (2): 321–6.CrossRefGoogle ScholarPubMed
Lynch, JK, Hirtz, DG, deVeber, G, Nelson, KB. Report of the National Institute of neurological disorders and stroke workshop on perinatal and childhood stroke. Pediatrics 2002; 109 (1): 116–23.CrossRefGoogle ScholarPubMed
Lynch, JK, Nelson, KB. Epidemiology of perinatal stroke. Curr Opin Pediatr 2001; 13: 499–505.CrossRefGoogle ScholarPubMed
Lee, J, Croen, , Lindan, Cet al. Predictors of outcome in perinatal arterial stroke: a population-based study. Ann Neurol 2005; 58: 303–8.CrossRefGoogle ScholarPubMed
Mercuri, E, Anker, S, Guzzetta, Aet al. Neonatal cerebral infarction and visual function at school age. Arch Dis Child 2003; 88 (6): 487–91.CrossRefGoogle ScholarPubMed
Goodman, R, Graham, P. Psychiatric problems in children with hemiplegia: cross sectional epidemiological survey. Br Med J 1996; 312: 1065–9.CrossRefGoogle ScholarPubMed
Trauner, DA, Chase, C, Walker, P, Wulfeck, B. Neurologic profiles of infants and children after perinatal stroke. Pediatric Neurol 1993; 9: 383–6.CrossRefGoogle ScholarPubMed
Chadwick, LM, Pemberton, PJ, Kurinczuk, JJ. Neonatal subgaleal haematoma: associated risk factors, complications and outcome. J Paediatr 1996; 32: 228–31.Google ScholarPubMed
Vacca, A. Birth by vacuum extraction: neonatal outcome. J Pediatr Child Health 1996; 32: 204–6.CrossRefGoogle ScholarPubMed
Vacca, A. Risk factors associated with subaponeurotic haemorrhage in full-term infants exposed to vacuum extraction. Br J Obstet Gynaecol 2006; 113 (4): 491–6.CrossRefGoogle ScholarPubMed
Cavlovich, FE. Subgaleal hemorrhage in the neonate. J Obstet Gynaecol Neonat Nursing 1995; 24: 397–404.CrossRefGoogle ScholarPubMed
Govaert, P, Vanhaesebrouck, P, Praeter, C, Moens, K, Leroy, J. Vacuum extraction, bone injury and neonatal subgaleal bleeding. Eur J Pediatr 1992; 151: 532–5.CrossRefGoogle ScholarPubMed
Ng, PC, Siu, YK, Lewindon, PJ. Subaponeurotic haemorrhage in the 1990's; a 3-year surveillance. Acta Paediatr Scand 1995; 84: 1065–9.CrossRefGoogle Scholar
Gebremariam, A. Subgaleal haemorrhage: risk factors and neurological and developmental outcome in survivors. Ann Trop Paediatr 1999; 19: 45–50.CrossRefGoogle ScholarPubMed
Boo, N-Y, Foong, K-W, Mahdy, ZA, Yong, S-C, Jaafar, R. Risk factors associated wtih subaponeurotic haemorrhage in full-term infants exposed to vacuum extraction. Br J Obstet Gynaecol 2005; 112: 1516–21.CrossRefGoogle Scholar
Plauche, WC. Subgaleal haematoma: a complication of instrumental delivery. J Am Med Assoc 1980; 244: 1597–8.CrossRefGoogle ScholarPubMed
Benaron, DA. Subgaleal hematoma causing hypovolemic shock during delivery after failed vacuum extraction: a case report. J Perinatol 1993; 13: 228.Google ScholarPubMed
Cheong, JL, Hagmann, C, Rennie, JMet al. Fatal newborn head enlargement: high resolution magnetic resonance imaging at 4.7 T. Arch Dis Child 2006; 91: F202–F203.CrossRefGoogle ScholarPubMed
Hanigan, WC, Powell, FC, Palagallo, G, Miller, TC. Lobar hemorrhages in full term neonates. Child Nerv Syst 1995; 11: 276–80.CrossRefGoogle ScholarPubMed
Hope, PL, Hall, MA, Millward-Sadler, GH, Normand, ICS. Alpha 1 antitrypsin deficiency presenting as a bleeding diathesis in the newborn. Arch Dis Child 1982; 57: 68–79.Google ScholarPubMed
Fogarty, K, Cohen, HL, Haller, JO. Sonography of fetal intracranial hemorrhage: unusual cases and a review of the literature. J Clin Ultrasound 1989; 17: 366–70.CrossRefGoogle Scholar
Sherer, DM, Anyaegbunam, A, Onyeije, C. Antepartum fetal intracranial hemorrhage, predisposing factors and prenatal sonography: a review. Am J Perinatol 1998; 15 (7): 431–41.CrossRefGoogle ScholarPubMed
Towner, D, Castro, MA, Evy-Wilkens, E, Gilbert, WM. Effect of mode of delivery in nulliparous women on neonatal intracranial injury. N Engl J Med 1999; 341: 1709–14.CrossRefGoogle ScholarPubMed
Govaert, P. Cranial Haemorrhage in the Term Newborn Infant, 1st edn. London, Mac Keith Press; 1993.Google Scholar
Ghi, T, Simonazzi, G, Perolo, Aet al. Outcome of antenatally diagnosed intracranial hemorrhage: case series and review of the literature. Ultrasound Obstet Gynaecol 2003; 22: 121–30.CrossRefGoogle ScholarPubMed
Buchanan, GR. Factor concentrate prophylaxis for neonatal haemophilia. J Pediatr Haematol Oncol 1999; 21: 254–6.Google Scholar
Voutsinas, L, Gorey, MT, Goyuld, R, Black, KS, Scuderi, DM, Hyman, RA. Venous sinus thrombosis as a cause of parenchymal and intraventricular hemorrhage in the full-term neonate. Clin Imaging 1991; 15: 273–5.CrossRefGoogle ScholarPubMed
Stam, J. Thrombosis of the cerebral veins and sinuses. New Engl J Med 2005; 352: 1791–8.CrossRefGoogle ScholarPubMed
Veber, G, Andrew, M, Adams, Cet al. Cerebral sinovenous thrombosis in children. N Engl J Med 2001; 345: 417–20.Google Scholar
Heller, C, Heinecke, A, Junker, Ret al. Cerebral venous thrombosis in children. A multifactorial origin. Circulation 2003; 108: 1362–7.CrossRefGoogle ScholarPubMed
Fitzgerald, KC, Williams, LS, Garg, BP, Carvalho, KS, Golomb, MR. Cerebral sinovenous thrombosis in the neonate. Arch Neurol 2006; 63: 405–9.CrossRefGoogle ScholarPubMed
Carvalho, KS, Bodensteiner, JB, Connolly, PJ, Garg, BP. Cerebral venous thrombosis in children. J Child Neurol 2001; 16: 574–80.CrossRefGoogle ScholarPubMed
Sipahi, T, Uner, C, Yildiz, YT, Akar, N. Inherited protein-C deficiency, factor VG 1691 A and FV A 4070 G mutations in a child with internal cerebral venous thrombosis. Pediatr Radiol 2000; 30: 420–3.CrossRefGoogle Scholar
Vielhaber, H, Ehrenforth, S, Koch, H, Scharrer, I, Werf, N, Nowak-Gottl, U. Cerebral venous sinus thrombosis in infancy and childhood: role of genetic and acquired risk factors of thrombophilia. Euro J Paediatr 1998; 157: 555–60.CrossRefGoogle ScholarPubMed
Klein, L, Bhardwaj, V, Gebara, B. Cerebral venous sinus thrombosis in a neonate with homozygous prothrombin G20210 A genotype. J Perinatol 2004; 24: 797–9.CrossRefGoogle Scholar
Pohl, M, Zimmerhackl, LB, Heinen, F, Sutor, AH, Schneppenheim, R, Brandis, M. Bilateral renal vein thrombosis and venous sinus thrombosis in a neonates with Factor V mutation (FV Leiden). Paediatrics 1998; 132: 159–61.CrossRefGoogle Scholar
Wu, TW, Miller, SP, Chin, Ket al. Multiple risk factors in neonatal sinovenous thrombosis. Neurology 2002; 59: 438–40.CrossRefGoogle ScholarPubMed
Hunt, RW, Badawi, N, Laing, S, Lam, A. Pre-eclampsia: a predisposing factor for neonatal venous sinus thrombosis?Paediatr Neurol 2001; 25: 242–6.CrossRefGoogle ScholarPubMed
Sebire, G, Tabarki, B, Saunders, et al. Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain 2005; 128: 477–89.CrossRefGoogle ScholarPubMed
Gebara, BM, Everett, KO. Dural sinus thrombosis complicating hypernatremic dehydration in a breastfed neonate. Clin Pediatr 2001; 40: 45.CrossRefGoogle Scholar
Korkmaz, A, Yigit, S, Firat, M, Orran, O. Cranial MRI in neonatal hypernatraemic dehydration. Pediatr Radiol 2000; 30: 323–5.CrossRefGoogle ScholarPubMed
Hanigan, WC, Tracy, PT, Tadros, WS, Wright, RM. Neonatal cerebral venous thrombosis. Pediatri Neurosci 1988; 14: 177–83.CrossRefGoogle ScholarPubMed
Konishi, Y, Kuriyama, M, Sudo, M, Konishi, K, Hayakawa, K, Ishii, Y. Superior sagittal sinus thrombosis in neonates. Pediatr Neurol 1987; 3 (4): 222–5.CrossRefGoogle ScholarPubMed
Rivkin, MJ, Anderson, ML, Kaye, EM. Neonatal idiopathic cerebral venous thrombosis: an unrecognised cause of transient seizures or lethargy. Ann Neurol 1992; 32: 51–6.CrossRefGoogle ScholarPubMed
Takanashi, J, Barkovich, AJ, Ferriero, DM, Suzuki, H, Kohno, Y. Widening spectrum of congenital hemiplegia. Periventricular venous infarction in term neonates. Neurology 2003; 61: 531–3.CrossRefGoogle ScholarPubMed
Higashida, RT, Helmer, E, Halbach, VV, Hieshima, GB. Direct thrombolytic therapy for superior sagittal sinus thrombosis. Am J Neuroradiol 1989; 10: S4–S6.Google ScholarPubMed
Barron, TF, Gusnard, DA, Zimmerman, RA, Clancy, RR. Cerebral venous thrombosis in neonates and children. Pediatr Neurol 1992; 8 (2): 112–16.CrossRefGoogle ScholarPubMed
Huang, AH, Robertson, RL. Spontaneous superficial parenchymal and leptomeningeal hemorrhage in term neonates. Am J Neuroradiol 2004; 25: 469–75.Google ScholarPubMed
Chaplin, ER, Goldstein, GW, Norman, D. Neonatal seizures, intracerebral hematoma, and subarachnoid hemorrhage in full-term infants. Pediatrics 1979; 63 (5): 812–15.Google ScholarPubMed
Palmer, TW, Donn, SM. Symptomatic subarachnoid hemorrhage in the term newborn. J Perinatol 1991; 11: 112–16.Google ScholarPubMed
Avrahami, E, Frishman, E, Minz, M. CT demonstration of intracranial haemorrhage in term newborn following vaccuum extractor delivery. Neuroradiology 1993; 35: 107–8.CrossRefGoogle Scholar
Chamnanvanakij, S, Rollins, N, Perlman, JM. Subdural hematoma in term infants. Pediatr Neurol 2002; 26: 301–4.CrossRefGoogle ScholarPubMed
Whitby, EH, Griffiths, PD, Rutter, Set al. Frequency and natural history of subdural haemorrhages in babies and relation to obstetric factors. Lancet 2004; 363: 846–51.CrossRefGoogle ScholarPubMed
Looney, CB, Smith, JK, Merck, LHet al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 2007; 242 (2): 535–41.CrossRefGoogle ScholarPubMed
Holden, KR, Titus, MO, Tassel, P. Cranial magnetic resonance imaging examination of normal term neonates: a pilot study. J Child Neurol 1999; 14 (11): 708–10.CrossRefGoogle ScholarPubMed
Jhawar, BS, Ranger, A, Steven, D, Del Maestro, RF. Risk factors for intracranial hemorrhage among full-term infants: a case-control study. Neurosurgery 2003; 52: 581–90.CrossRefGoogle ScholarPubMed
Tavani, F, Zimmerman, RA, Clancy, RR, Licht, DJ, Mahle, WT. Incidental intracranial hemorrhage after uncomplicated birth: MRI before and after neonatal heart surgery. Neuroradiology 2003; 45: 253–8.CrossRefGoogle ScholarPubMed
Hayashi, T, Hashimoto, T, Fukuda, S, Ohshima, Y, Moritaka, K. Neonatal subdural hematoma secondary to birth injury. Clinical analysis of 48 survivors. Child Nerv Syst 1987; 3: 23–9.CrossRefGoogle ScholarPubMed
Currarino, G. Occipital osteodiastasis: presentation of four cases and review of the literature. Pediatr Radiol 2000; 30: 823–9.CrossRefGoogle ScholarPubMed
Govaert, P, Calliauw, L, Vanhaesebrouck, P, Martens, F, Barrilari, A. On the management of neonatal tentorial damage. Eight case reports and a review of the literature. Acta Neurochir 1990; 106: 52–64.CrossRefGoogle Scholar
Rotmensch, S, Grannum, PA, Nores, JA, Hall, C, Keller, MS, McCarthy, S. In utero diagnosis and management of fetal subdural haematoma. Am J Obstet Gynecol 1991; 164: 1246–8.CrossRefGoogle Scholar
Nogueira, GJ. Chronic subdural hematoma in utero. Child Nerv Syst 1992; 8: 462–4.CrossRefGoogle ScholarPubMed
Volpe JJ. Intracranial haemorrhage: germinal matrix – intraventricular hemorrhage of the premature infant. In: Volpe, JJ, ed. Neurology of the Newborn, 4th edn. 2000; 403–21.Google Scholar
Orrison, WW, Robertson, WC, Sackett, JF. Computerized tomography in chronic subdural haematomas (effusions) of infancy. Neuroradiology 1978; 16: 79–81.CrossRefGoogle ScholarPubMed
Jhawar, BS, Ranger, A, Steven, DA, Maestro, Del RF. A follow-up study of infants with intracranial hemorrhage at full-term. Can J Neurol Sci 2005; 32: 332–9.CrossRefGoogle ScholarPubMed
King, SJ, Boothroyd, AE. Cranial trauma following birth in term infants. Br J Radiol 1998; 71: 233–8.CrossRefGoogle ScholarPubMed
Vas, CJ. Growing skull fracture. Dev Med Child Neurol 1966; 8: 734–40.Google Scholar
Menezes, AH, Smith, , Bell, WE. Posterior fossa hemorrhage in the term neonate. Neurosurgery 1983; 13 (4): 452–6.CrossRefGoogle ScholarPubMed
Scotti, G, Flodmark, O, Harwood-Nash, DC, Humphries, RP. Posterior fossa haemorrhages in the newborn. J Comput Assist Tomogr 1981; 5: 68–72.CrossRefGoogle ScholarPubMed
Perrin, RG, Rutka, JT, Drake, JMet al. Management and outcomes of posterior fossa subdural hematomas in neonates. Neurosurgery 1997; 40 (6): 1190–200.CrossRefGoogle ScholarPubMed
Donat, JF, Okazaki, H, Kleinberg, F, Reagan, TJ. Intraventricular hemorrhages in full term and premature infants. Mayo Clin Proc 1978; 53: 437–41.Google ScholarPubMed
Lacey, DJ, Terplan, K. Intraventricular haemorrhage in the full term neonate. Dev Med Child Neurol 1982; 241: 332–4.Google Scholar
Hayden, CK, Shattuck, KE, Richardson, CJ, Ahrendt, DK, House, R, Swischuk, . Subependymal germinal matrix hemorrhage in full-term neonates. Pediatrics 1985; 75 (4): 714–18.Google ScholarPubMed
Wu, YW, Hamrick, SEG, Miller, SPet al. Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 2003; 54: 123–6.CrossRefGoogle ScholarPubMed
Hanigan, WC, Powell, FC, Miller, TC, Wright, RM. Symptomatic intracranial hemorrhage in full-term infants. Child Nerv Syst 1995; 11 (698): 707.CrossRefGoogle ScholarPubMed
Sandberg, DI, Lamberti-Pasculli, M, Drake, JM, Humphreys, RP, Rutka, JT. Spontaneous intraparenchymal hemorrhage in full term neonates. Neurosurgery 2001; 48: 1042–1049.Google ScholarPubMed
Schuenke, M, Schulte, E, Schumacher, Uet al. Thieme Atlas of Anatomy: Head and Neuroanatomy. Stuttgart, Thieme Medical Publishers, 2007.Google Scholar
Govaert, P, Achten, E, Vanhaesebrouck, P, Praeter, C, Damme, J. Deep cerebral venous thrombosis in thalamo-ventricular haemorrhage of the term newborn. Pediatr Radiol 1992; 22: 123–7.CrossRefGoogle ScholarPubMed
Vries, LS, Smet, M, Goemans, N, Wilms, G, Develiger, H, Casaer, P. Unilateral thalamic haemorrhage in the pre-term and full-term newborn. Neuropediatrics 1992; 23: 153–6.CrossRefGoogle ScholarPubMed
Roland, EH, Flodmark, O, Hill, A. Thalamic haemorrhage with intraventricular haemorrhage in the full term newborn. Pediatrics 1990; 85: 737–42.Google ScholarPubMed
Trounce, JQ, Fawer, C-L, Punt, J, Dodd, KL, Fielder, AR, Levene, MI. Primary thalamic haemorrhage in the newborn: a new clinical entity. Lancet 1985; 2: 190–2.CrossRefGoogle Scholar
Primhak, RA, Smith, MF. Primary thalamic haemorrhage in the first week of life. Lancet 1985; 1: 635.Google Scholar
Montoya, F, Couture, A, Frerebeau, PH, Bonnet, H. Hemorragie intraventriculair chez le nouveau-ne a terme: origine thalamique. Pediatrie 1987; 42: 205–9.Google Scholar
Adams, C, Hochhauser, L, Logan, WJ. Primary thalamic and caudate hemorrhage in term neonates presenting with seizures. Pediatr Neurol 1988; 4: 175–7.CrossRefGoogle ScholarPubMed
Garg, BP, DeMeyer, WE. Ischemic thalamic infarction in children: clinical presentation, etiology, and outcome. Pediatr Neurol 1995; 13: 46–9.CrossRefGoogle ScholarPubMed
Grunnet, ML, Shields, WD. Cerebellar haemorrhage in preterm infants. J Pediatr 1975; 88: 605–8.CrossRefGoogle Scholar
Perlman, JM, Nelson, JS, McAlister, WH, Volpe, JJ. Intracerebellar haemorrhage in a premature newborn: diagnosis with real-time ultrasound and correlation with autopsy findings. Pediatrics 1983; 71: 159–62.Google Scholar
Reeder, JD, Setzer, ES, Kaude, JV. Ultrasonographic detection of perinatal intracerebellar haemorrhage. Pediatrics 1982; 70: 385–6.Google Scholar
Martin, R, Roessmann, U, Fanaroff, A. Massive intracerebellar haemorrhage in low birthweight infants. J Pediatr 1976; 89: 290–3.CrossRefGoogle Scholar
Chadduck, WM, Duong, DH, Kast, JM, Donahue, DJ. Pediatric cerebellar hemorrhages. Child Nerv Syst 1995; 11: 579–83.CrossRefGoogle ScholarPubMed
Chequer, RS, Tuarp, BR, Dreimane, D, Hahn, JS, Clancy, RR, Coen, RW. Prognostic value of EEG in neonatal meningitis: retrospective study of 29 infants. Paediatr Neurol 1992; 8: 417–22.CrossRefGoogle ScholarPubMed
Klinger, G, Chin, C-N, Otsubo, H, Beyene, J, Perlman, M. Prognostic value of EEG in neonatal bacterial meningitis. Pediatr Neurol 2001; 24 (1): 28–31.CrossRefGoogle ScholarPubMed
Baxter, P. Epidemiology of pyridoxine dependent and pyridoxine responsive seizures in the UK. Arch Dis Child 1999; 81: 431–3.CrossRefGoogle ScholarPubMed
Baxter, P. Pyridoxine-dependent and pyridoxine-responsive seizures. Dev Med Child Neurol 2001; 43: 416–20.CrossRefGoogle ScholarPubMed
Gospe, SM. Current perspectives on pyridoxine-dependent seizures. J Pediatr 1998; 132: 919–23.CrossRefGoogle ScholarPubMed
Gospe, SM. Pyridoxine-dependent seizures: findings from recent studies pose new questions. Pediatr Neurol 2002; 26: 181–5.CrossRefGoogle ScholarPubMed
Nabbout, R, Soufflet, C, Plouin, P, Dulac, O. Pyridoxine dependent epilepsy: a suggestive electroclinical pattern. Arch Dis Child 1999; 81: F125–F129.CrossRefGoogle ScholarPubMed
Kroll, J. Pyridoxine for neonatal seizures: an unexpected hazard. Dev Med Child Neurol 1985; 27: 369–82.Google Scholar
Fishman, RA. The glucose transporter protein and gluconeogenic brain injury. N Engl J Med 1991; 325: 731–2.CrossRefGoogle Scholar
Wang, D, Pascual, JM, Yang, Het al. GLUT-1 deficiency syndrome: clinical, genetic and therapuetic aspects. Ann Neurol 2005; 57 (1): 111–18.CrossRefGoogle Scholar
Leppert, M, Singh, N. Benign familial neonatal epilepsy with mutations in two potassium channel genes. Curr Opin Neurol 1999; 12: 143–7.CrossRefGoogle ScholarPubMed
Guerra, M, Rennie, JM, Wilson, G, Boylan, G, Pressler, RM. Tonic-clonic seizures in benign familial seizures. Pediatr Neurol 2002; 26: 398–401.CrossRefGoogle Scholar
Ronen, G, Rosales, TO, Connolly, M, Anderson, VE, Leppert, M. Seizure characteristics in chromosome 20 benign familial neonatal convulsions. Neurology 1993; 43: 1355–60.CrossRefGoogle ScholarPubMed
Williams, A, Gray, RG, Poulton, K, Ranami, P, Whitehouse, WP. A case of Ohtahara syndrome with cytochrome oxidase deficiency. Dev Med Child Neurol 1998; 40: 568–70.CrossRefGoogle ScholarPubMed
Kubova, H, Druga, R, Lukasiuk, Ket al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 2001; 21 (10): 3593–9.CrossRefGoogle ScholarPubMed
Koh, S, Storey, TW, Santos, TC, Mian, AY, Cole, AJ. Early-life seizures in rats increase susceptibility to seizure-induced brain injury in adulthood. Neurology 1999; 53: 912–21.CrossRefGoogle ScholarPubMed
Holmes, GL, Khazipov, R, Ben-Ari, Y. New concepts in neonatal seizures. Neuroreport 2002; 13 (1): A3–A8.CrossRefGoogle ScholarPubMed
Holmes, GL, Sarkisian, M, Ben-Ari, Y, Chevassus-Au-Louis, N. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 1999; 404: 537–53.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Wasterlain, CG. Effects of neonatal status epilepticus on rat brain development. Neurology 1976; 26: 975–86.CrossRefGoogle ScholarPubMed
McCabe, BK, Silveira, DC, Cilio, MRet al. Reduced neurogenesis after neonatal seizures. J Neurosci 2001; 6: 2094–103.CrossRefGoogle Scholar
Dzhala, VI, Talos, DM, Sdrulla, DAet al. NKCC1 transporter facilitates seizures in the developing brain. Nature Med 2005; 11: 1205–13.CrossRefGoogle ScholarPubMed
Bittigau, P, Sifringer, M, Genz, Ket al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci USA 2002; 99: 15089–94.CrossRefGoogle ScholarPubMed
Boylan, GB, Rennie, JM, Pressler, RM, Wilson, G, Morton, M, Binnie, CD. Phenobarbitone, neonatal seizures, and video-EEG. Arch Dis Child 2002; 86 (3): 165–70.CrossRefGoogle ScholarPubMed
Painter, MJ, Scher, MS, Stein, ADet al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med 1999; 341: 485–9.CrossRefGoogle ScholarPubMed
Katz, I, Kim, J, Gale, KN, Kondratyev, AD. Effects of lamotrigine alone and in combination with MK-801, phenobarbital or phenytoin on call death in the neonatal rat brain. J Pharmacol Exp Ther 2007; e pub.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L, Westgren, U, Rosen, I, Svenningsen, NW. Lidocaine for treatment of severe seizures in newborn infants. Acta Paediatr Scand 1988; 77: 79–84.CrossRefGoogle ScholarPubMed
Boylan, G, Rennie, JM, Chorley, Get al. Second line anticonvulsant treatment of neonatal seizures: a video-EEG monitoring study. Neurology 2004; 62: 486–8.CrossRefGoogle ScholarPubMed
Andre, M, Boutroy, MJ, Dubruc, Cet al. Clonazepam pharmacokinetics and therapeutic efficacy in neonatal seizures. Eur J Clin Pharmacol 1986; 30: 585–9.CrossRefGoogle ScholarPubMed
Tekgul, H, Gaubreau, K, Soul, Jet al. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics 2006; 117 (4): 1270–80.CrossRefGoogle ScholarPubMed
Ortibus, EL, Sum, JM, Hahn, JS. Predictive value of EEG for outcome and epilepsy following neonatal seizures. Electroencephalogr Clin Neurophysiol 1996; 98: 175–85.CrossRefGoogle ScholarPubMed
Boylan, GB, Pressler, RM, Rennie, JMet al. Outcome of electroclinical, electrographic, and clinical seizures in the newborn infant. Dev Med Child Neurol 1999; 41: 819–25.CrossRefGoogle ScholarPubMed
Wirrell, EC, Armstrong, EA, Osman, LD, Yager, JY. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res 2001; 50 (4): 445–54.CrossRefGoogle ScholarPubMed
Miller, SP, Weiss, J, Barnwell, Aet al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 2002; 58: 542–8.CrossRefGoogle ScholarPubMed
Scher, MS, Aso, K, Beggarly, ME, Hamid, MY, Steppe, DA, Painter, MJ. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 1993; 91: 128–34.Google ScholarPubMed
Kaindl, AM, Asimiadou, S, Manthey, D, Hagen, MDH, Turski, L, Ikonomidou, C. Antiepileptic drugs and the developing brain. Cell Mol Life Sci 2006; 63: 399–413.CrossRefGoogle ScholarPubMed
Massingale, TW, Boutross, S. Survey of treatment practices for neonatal seizures. J Perinatol 1993; 13: 107–10.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The baby with a suspected seizure
    • By Janet M. Rennie, Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Cornelia F. Hagmann, Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Nicola J. Robertson, Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
  • Edited by Janet M. Rennie, University College London, Cornelia F. Hagmann, University College London, Nicola J. Robertson, University College London
  • Book: Neonatal Cerebral Investigation
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544750.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The baby with a suspected seizure
    • By Janet M. Rennie, Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Cornelia F. Hagmann, Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Nicola J. Robertson, Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
  • Edited by Janet M. Rennie, University College London, Cornelia F. Hagmann, University College London, Nicola J. Robertson, University College London
  • Book: Neonatal Cerebral Investigation
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544750.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The baby with a suspected seizure
    • By Janet M. Rennie, Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Cornelia F. Hagmann, Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Nicola J. Robertson, Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
  • Edited by Janet M. Rennie, University College London, Cornelia F. Hagmann, University College London, Nicola J. Robertson, University College London
  • Book: Neonatal Cerebral Investigation
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544750.009
Available formats
×