Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-05T06:40:08.705Z Has data issue: false hasContentIssue false

14 - Electroencephalography and amplitude-integrated EEG

from Section 3 - Radiological and neurophysiological investigations

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

The electroencephalogram (EEG) records electrical activity from the cerebral cortex. This activity is derived from synchronized postsynaptic action potentials from large numbers of neurons, reflecting the functional state of the brain. Thousands of publications have described the EEG during normal and abnormal conditions, in subjects of different ages, including very preterm newborn infants. Spontaneous recurrent action potentials within thalamocortical relay cells, the reticular thalamic nucleus, and cortical pyramidal cells constitute the basis for the EEG activity (Steriade et al., 1990). This activity is synchronized by recurrent connections between the thalamocortical relay cells and the reticular thalamic nucleus, and by thalamocortical connections. In adults, intracortical connections generate higher frequency EEG components during mental processes and active wakefulness. During arousal, cholinergic (and norepinephrinergic) afferents from the brainstem exert an excitatory depolarizing effect on thalamocortical and cortical cells and inhibit the reticular thalamic cells. The net result of arousal is a reduction of synchronous low-frequency activity, and an increase of asynchronous high-frequency activity. The neurophysiological basis for the EEG in newborn preterm and term infants is not very well known. The cortical subplate zone, a structure that is present in the fetus during the second trimester and which is the origin of thalamocortical and corticocortical afferents, probably modulates EEG activity via cortical connections (Kostovic & Jovanov-Milosevic, 2006). The subplate zone is probably also important for the mechanisms underlying spontaneous activity transients (SAT) in the discontinuous EEG of very preterm infants. The SATs are characterized by very-low-frequency waves with higher-frequency components superimposed.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 211 - 228
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

al Naqeeb, N., Edwards, A. D., Cowan, F. M., et al. (1999). Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics, 103, 1263–71.CrossRefGoogle ScholarPubMed
Als, H., Duffy, F. H., McAnulty, G. B., et al. (2004). Early experience alters brain function and structure. Pediatrics, 113, 846–57.CrossRefGoogle ScholarPubMed
Aso, K., Scher, M. S., & Barmada, M. A. (1989). Neonatal electroencephalography and neuropathology. Journal of Clinical Neurophysiology, 6, 103–23.CrossRefGoogle ScholarPubMed
Aso, K., Abdad-Barmada, M., & Scher, M. S. (1993). EEG and the neuropathology in premature neonates with intraventricular hemorrhage. Journal of Clinical Neurophysiology, 10, 304–13.CrossRefGoogle ScholarPubMed
Bell, A. H., McClure, B. G., & Hicks, E. M. (1990). Power spectral analysis of the EEG of term infants following birth asphyxia. Developmental Medicine and Child Neurology, 32, 990–8.CrossRefGoogle ScholarPubMed
Bell, A. H., McClure, B. G., McCullagh, P. J., et al. (1991). Variation in power spectral analysis of the EEG with gestational age. Journal of Clinical Neurophysiology, 8, 312–19.CrossRefGoogle ScholarPubMed
Bell, A. H., Greisen, G., & Pryds, O. (1993). Comparison of the effects of phenobarbitone and morphine administration on EEG activity in preterm babies. Acta Paediatrica, 82, 35–9.CrossRefGoogle ScholarPubMed
Boylan, G. B., Rennie, J. M., Pressler, R. M., et al. (2002). Phenobarbitone, neonatal seizures, and video-EEG. Archives of Disease in Childhood Fetal and Neonatal Edition, 86, F165–70.CrossRefGoogle ScholarPubMed
Burdjalov, V. F., Baumgart, S., & Spitzer, A. R. (2003). Cerebral function monitoring: a new scoring system for the evaluation of brain maturation in neonates. Pediatrics, 112, 855–61.CrossRefGoogle ScholarPubMed
Bye, A. M. & Flanagan, D. (1995). Spatial and temporal characteristics of neonatal seizures. Epilepsia, 36, 1009–16.CrossRefGoogle ScholarPubMed
Clancy, R. R. & Legido, A. (1987). The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia, 28, 537–41.CrossRefGoogle ScholarPubMed
Clancy, R. R., Legido, A., & Lewis, D. (1988). Occult neonatal seizures. Epilepsia, 29, 256–61.CrossRefGoogle ScholarPubMed
Connell, J. A., Oozeer, R., & Dubowitz, V. (1987a). Continuous 4-channel EEG monitoring: a guide to interpretation, with normal values, in preterm infants. Neuropediatrics, 18, 138–45.CrossRefGoogle ScholarPubMed
Connell, J., Oozeer, R., Regev, R., et al. (1987b). Continuous four-channel EEG monitoring in the evaluation of echodense ultrasound lesions and cystic leucomalacia. Archives of Disease in Childhood, 62, 1019–24.CrossRefGoogle ScholarPubMed
Eswaran, H., Wilson, J., Preissl, H., et al. (2002). Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet, 360, 779–80.CrossRefGoogle ScholarPubMed
Graziani, L. J., Streletz, L. J., Baumgart, S., et al. (1994). Predictive value of neonatal encephalograms before and during extracorporeal membrane oxygenation. Journal of Pediatrics, 125, 969–75.CrossRefGoogle Scholar
Greisen, G., Hellström-Westas, L., Lou, H., et al. (1987). EEG depression and germinal layer haemorrhage in the new-born. Acta Paediatrica Scandinavica, 76, 519–25.CrossRefGoogle Scholar
Gürses, D., Kiliç, I., & Sahiner, T. (2002). Effects of hyperbilirubinemia on cerebrocortical electrical activity in newborns. Pediatric Research, 52, 125–30.CrossRefGoogle ScholarPubMed
Hahn, J. S., Monyer, H., & Tharp, B. R. (1989). Interburst interval measurements in the EEGs of premature infants with normal neurological outcome. Electroencephalography and Clinical Neurophysiology, 73, 410–18.CrossRefGoogle ScholarPubMed
Hayakawa, M., Okumura, A., Hayakawa, F., et al. (2001). Background electroencephalographic (EEG) activities of very preterm infants born at less than 27 weeks gestation: a study on the degree of continuity. Archives of Disease in Childhood Fetal and Neonatal Edition, 84, F163–7.CrossRefGoogle ScholarPubMed
Hellström-Westas, L. (1992). Comparison between tape-recorded and amplitude-integrated EEG monitoring in sick newborn infants. Acta Paediatrica, 81, 812–19.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Westgren, U., Rosén, I., et al. (1988). Lidocaine treatment of severe seizures in newborn infants. I. Clinical effects and cerebral electrical activity monitoring. Acta Paediatrica Scandinavica, 77, 79–84.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Rosén, I., & Svenningsen, N. W. (1991). Cerebral function monitoring in extremely small low birthweight (ESLBW) infants during the first week of life. Neuropediatrics, 22, 27–32.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Rosén, I., & Svenningsen, N. W. (1995). Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Archives of Disease in Childhood, 72, F34–8.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Klette, H., Thorngren-Jerneck, K., et al. (2001). Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics, 32, 319–24.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Vries, L. S., & Rosén, I. (2003). An Atlas of Amplitude-Integrated EEG's in the Newborn, 1st edn. London: Parthenon Publishing, pp. 1–150.Google Scholar
Helmers, S. L., Constantinou, J. E., Newburger, J. W., et al. (1997). Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalography and Clinical Neurophysiology, 102, 27–36.CrossRefGoogle ScholarPubMed
Horan, M., Azzopardi, D., Edwards, A. D., et al. (2007). Lack of influence of mild hypothermia on amplitude-integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Human Development, 83, 69–75.CrossRefGoogle ScholarPubMed
Inder, T. E., Buckland, L., Williams, C. E., et al. (2003). Lowered electroencephalographic spectral edge frequency predicts the presence of cerebral white matter injury in premature infants. Pediatrics, 111, 27–33.CrossRefGoogle ScholarPubMed
Klinger, G., Chin, C. N., Otsubo, H., et al. (2001). Prognostic value of EEG in neonatal bacterial meningitis. Pediatric Neurology, 24, 28–31.CrossRefGoogle ScholarPubMed
Kostovic, I. & Jovanov-Milosevic, N. (2006). The development of cerebral connections during the first 20–45 weeks' gestation. Seminars in Fetal and Neonatal Medicine, 11, 415–22.CrossRefGoogle Scholar
Kuhle, S., Klebermass, K., Olischar, M., et al. (2001). Sleep-wake cycles in preterm infants below 30 weeks of gestational age. Preliminary results of a prospective amplitude-integrated EEG study. Wiener Klinische Wochenschrift, 113, 219–23.Google ScholarPubMed
Lamblin, M. D., Andre, M., Challamel, M. J., et al. (1999). Electroencephalography of the premature and term newborn. Maturational aspects and glossary. Neurophysiologie Clinique, 29, 123–219.CrossRefGoogle ScholarPubMed
Marret, S., Parain, D., Ménard, J. F., et al. (1997). Prognostic value of neonatal electroencephalography in premature newborns less than 33 weeks gestational age. Electroencephalography and Clinical Neurophysiology, 102, 178–85.CrossRefGoogle Scholar
Maynard, D., Prior, P. F., & Scott, D. F. (1969). Device for continuous monitoring of cerebral activity in resuscitated patients. British Medical Journal, 4, 545–6.CrossRefGoogle ScholarPubMed
Menache, C. C., Bourgeois, B. F., & Volpe, J. J. (2002). Prognostic value of neonatal discontinuous EEG. Pediatric Neurology, 27, 93–101.CrossRefGoogle ScholarPubMed
Mercuri, E., Rutherford, M., Cowan, F., et al. (1999). Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics, 103, 39–46.CrossRefGoogle ScholarPubMed
Mizrahi, E. M., Hrachovy, R. A., & Kellaway, P. (2004). Atlas of Neonatal Encephalography, 3rd edn. Philadelphia, PA: Lippincott Williams & Wilkins, pp. 1–250.Google Scholar
Murray, D. M., Boylan, G. B., Ali, I., et al. (2008). Defining the gap between electrographic seizure burden, clinical expression, and staff recognition of neonatal seizures. Archives of Disease in Childhood Fetal and Neonatal Edition, 93, F187–91.CrossRefGoogle ScholarPubMed
Nguyen The Tich, S., Vecchierini, M. F., Debillon, T., et al. (2003). Effects of sufentanil on electroencephalogram in very and extremely preterm neonates. Pediatrics, 111, 123–8.CrossRefGoogle ScholarPubMed
Okumura, A., Hayakawa, F., Kato, T., et al. (2002). Developmental outcome and types of chronic-stage EEG abnormalities in preterm infants. Developmental Medicine and Child Neurology, 44, 729–34.CrossRefGoogle ScholarPubMed
Olischar, M., Klebermass, K., Kuhle, S., et al. (2004). Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks' gestational age. Pediatrics, 113, e61–e66.CrossRefGoogle ScholarPubMed
Oliveira, A. J., Nunes, M. L., Haertel, L. M., et al. (2000). Duration of rhythmic EEG patterns in neonates: new evidence for clinical and prognostic significance of brief rhythmic discharges. Clinical Neurophysiology, 111, 1646–53.CrossRefGoogle ScholarPubMed
Osredkar, D., Toet, M. C., Rooij, L. G. M., et al. (2005). Sleep-wake cycling on amplitude-integrated EEG in full-term newborns with hypoxic-ischemic encephalopathy. Pediatrics, 115, 327–32.CrossRefGoogle Scholar
Pappas, A., Shankaran, S., Stockmann, P. T., et al. (2006). Changes in amplitude-integrated electroencephalography in neonates treated with extracorporeal membrane oxygenation: a pilot study. Journal of Pediatrics, 148, 125–7.CrossRefGoogle ScholarPubMed
Patrizi, S., Holmes, G. L., Orzalesi, M., et al. (2003). Neonatal seizures: characteristics of EEG ictal activity in preterm and fullterm infants. Brain and Development, 25, 427–37.CrossRefGoogle ScholarPubMed
Pezzani, C., Radvanyi-Bouvet, M. F., Relier, J. P., et al. (1986). Neonatal electroencephalography during the first twenty-four hours of life in full-term newborn infants. Neuropediatrics, 17, 11–18.CrossRefGoogle ScholarPubMed
Scher, M. S., Hamid, M. Y., Steppe, D. A., et al. (1993). Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia, 34, 284–8.CrossRefGoogle ScholarPubMed
Scher, M. S., Johnson, M. W., & Holditch-Davis, D. (2005). Cyclicity of neonatal sleep behaviors at 25 to 30 weeks' postconceptional age. Pediatric Research, 57, 879–82.CrossRefGoogle ScholarPubMed
Selton, D., Andre, M., & Hascoet, J. M. (2000). Normal EEG in very premature infants: reference criteria. Clinical Neurophysiology, 111, 2116–24.CrossRefGoogle ScholarPubMed
Shany, E., Goldstein, E., Khvatskin, S., et al. (2006). Predictive value of amplitude-integrated electroencephalography pattern and voltage in asphyxiated term infants. Pediatric Neurology, 35, 335–42.CrossRefGoogle ScholarPubMed
Shany, E., Benzaquen, O., Friger, M., et al. (2008). Influence of antiepileptic drugs on amplitude-integrated electroencephalography. Pediatric Neurology, 39, 387–91.CrossRefGoogle ScholarPubMed
Shellhaas, R. A., Saoita, A. I., & Clancy, R. R. (2007). Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics, 120, 770–7.CrossRefGoogle ScholarPubMed
Spitzmiller, R. E., Phillips, T., Meinzen-Derr, J., et al. (2007). Amplitude-integrated EEG is useful in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischemic encephalopathy: a meta-analysis. Journal of Child Neurology, 22, 1069–78.CrossRefGoogle ScholarPubMed
Stenninger, E., Eriksson, E., Stigfur, A., et al. (2001). Monitoring of early postnatal glucose homeostasis and cerebral function in newborn infants of diabetic mothers. A pilot study. Early Human Development, 62, 23–32.CrossRefGoogle ScholarPubMed
Steriade, M., Gloor, P., Llinás, R., et al. (1990). Report of IFCN Committee on basic mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76, 481–508.CrossRefGoogle ScholarPubMed
Steriade, M., Amzica, F., & Contreras, D. (1994). Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalography and Clinical Neurophysiology, 90, 1–16.CrossRefGoogle ScholarPubMed
Tekgul, H., Bourgeois, B. F., Gauvreau, K., et al. (2005). Electroencephalography in neonatal seizures: comparison of a reduced and a full 10/20 montage. Pediatric Neurology, 32, 155–61.CrossRefGoogle Scholar
Horst, H. J., Sommer, C., Bergman, K. A., et al. (2004). Prognostic significance of amplitude-integrated EEG during the first 72 hours after birth in severely asphyxiated neonates. Pediatric Research, 55, 1026–33.CrossRefGoogle ScholarPubMed
Tharp, B. R. (2002). Neonatal seizures and syndromes. Epilepsia, 43 (Suppl. 3), 2–10.CrossRefGoogle ScholarPubMed
Tharp, B. R., Scher, M. S., & Clancy, R. R. (1989). Serial EEGs in normal and abnormal infants with birthweights less than 1200 grams – a prospective study with long term follow-up. Neuropediatrics, 20, 64–72.CrossRefGoogle Scholar
Thordstein, M., Löfgren, N., Flisberg, A., et al. (2005). Infraslow EEG activity in burst periods from post asphyctic full term neonates. Clinical Neurophysiology, 116, 1501–16.CrossRefGoogle ScholarPubMed
Thornberg, E. & Thiringer, K. (1990). Normal patterns of cerebral function monitor traces in term and preterm neonates. Acta Paediatrica Scandinavica, 79, 20–5.CrossRefGoogle Scholar
Toet, M. C., Hellström-Westas, L., Groenendaal, F., et al. (1999). Amplitude integrated EEG at 3 and 6 hours after birth in fullterm neonates with hypoxic ischaemic encephalopathy. Archives of Disease in Childhood, 81, F19–23.CrossRefGoogle Scholar
Toet, M. C., Meij, W., Vries, L. S., et al. (2002). Comparison between simultaneously recorded amplitude integrated EEG (cerebral function monitor (CFM)) and standard EEG in neonates. Pediatrics, 109, 772–9.CrossRefGoogle ScholarPubMed
Vanhatalo, S. & Kaila, K. (2006). Development of neonatal EEG activity: from phenomenology to physiology. Seminars in Fetal and Neonatal Medicine, 11, 471–8.CrossRefGoogle ScholarPubMed
Leuven, K., Groenendaal, F., Toet, M. C., et al. (2004). Midazolam and amplitude integrated EEG in asphyxiated full-term neonates. Acta Paediatrica, 93, 1221–7.CrossRefGoogle ScholarPubMed
Rooij, L. G., Toet, M. C., Osredkar, D., et al. (2005). Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Archives of Disease in Childhood Fetal and Neonatal Edition, 90, F245–51.CrossRefGoogle ScholarPubMed
Rooij, L. G. M., Vries, L. S., Handryastuti, S., et al. (2007). Neurodevelopmental outcome in full term infants with status epilepticus detected with amplitude-integrated electroencephalography. Pediatrics, 120, e354–63.CrossRefGoogle Scholar
Vecchierini, M. F., d'Allest, A. M., & Verpillat, P. (2003). EEG patterns in 10 extreme premature neonates with normal neurological outcome: qualitative and quantitative data. Brain Development, 25, 330–7.CrossRefGoogle ScholarPubMed
Victor, S., Appleton, R. E., Beirne, M., et al. (2005a). Spectral analysis of electroencephalography in premature newborn infants: normal ranges. Pediatric Research, 57, 336–41.CrossRefGoogle ScholarPubMed
Victor, S., Appleton, R. E., Beirne, M., et al. (2005b). Effect of carbon dioxide on background cerebral electrical activity and fractional oxygen extraction in very low birth weight infants just after birth. Pediatric Research, 58, 579–85.CrossRefGoogle ScholarPubMed
Victor, S., Marson, A. G., Appleton, R. E., et al. (2006). Relationship between blood pressure, cerebral electrical activity, cerebral fractional oxygen extraction, and peripheral blood flow in very low birth weight newborn infants. Pediatric Research, 59, 314–19.CrossRefGoogle ScholarPubMed
Viniker, D. A., Maynard, D. E., & Scott, D. F. (1984). Cerebral function monitor studies in neonates. Clinical EEG (Electroencephalography), 15, 185–92.CrossRefGoogle ScholarPubMed
Watanabe, K., Hayakawa, F., & Okumura, A. (1999). Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Development, 21, 361–72.CrossRefGoogle ScholarPubMed
West, C. R., Harding, J. E., Williams, C. E., et al. (2006a). Quantitative electroencephalographic patterns in normal preterm infants over the first week after birth. Early Human Development, 82, 43–51.CrossRefGoogle ScholarPubMed
West, C. R., Groves, A. M., Williams, C. E., et al. (2006b). Early low cardiac output is associated with compromised electroencephalographic activity in very preterm infants. Pediatric Research, 59, 610–15.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×