Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-01T02:14:40.054Z Has data issue: false hasContentIssue false

15 - Emergence of spontaneous and evoked electroencephalographic activity in the human brain

from Section 3 - Radiological and neurophysiological investigations

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

The adult human brain is estimated to contain about 1011 neurons with about 1000–10 000 synapses targeting each of them. This means that within each person's skull, there is a genuine microcosmos, in which the number of key elements (the ~1014 synapses) far exceeds the number of stars in our galaxy. The mere numbers above, however, provide only a faint picture of the true complexity of the brain, which is more accurately reflected in the microanatomical and functional specificity of the neuronal connections. The structural and functional specificity of wiring requires precise targeting of presynaptic endings to their proper postsynaptic locations at the subcellular level, and this has to be achieved for both local and distant connections in the course of brain development. In addition, the brain retains a high degree of structural and functional plasticity throughout an individual's lifetime, and therefore the wiring of neuronal networks is subject to control systems that maintain and also modify existing connections (Pascual-Leone et al., 2005). The plasticity of the brain is at its highest during development, and there is a massive literature describing various kinds of “sensitive” and “critical” periods during which the initial, preestablished connections show a heightened sensitivity to activity-induced modification (Katz & Crowley, 2002; Hooks & Chen, 2007).

Our genes total about 20 000 in number, and this has often been contrasted with the brain's complex phenotype to provide an argument against “genetic determinism” in brain development. However, this is not a valid comparison at all.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 229 - 244
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahám, H., Veszprémi, B., Gömöri, E., et al. (2007). Unaltered development of the archi- and neocortex in prematurely born infants: genetic control dominates in proliferation, differentiation and maturation of cortical neurons. Progress in Brain Research, 164, 3–22.CrossRefGoogle ScholarPubMed
Bernhard, C. G., Kolmodin, G. M., & Meyerson, B. A. (1967). On the prenatal development of function and structure in the somesthetic cortex of the sheep. Progress in Brain Research, 26, 60–77.CrossRefGoogle ScholarPubMed
Blaesse, P., Airaksinen, M. S., Rivera, C., et al. (2008). Cation-chloride cotransporters and neuronal function. Neuron, 61, 820–38.CrossRefGoogle Scholar
Blumberg, M. S. & Lucas, D. E. (1994). Dual mechanisms of twitching during sleep in neonatal rats. Behavioral Neuroscience, 108, 1196–202.CrossRefGoogle ScholarPubMed
Buzsaki, G. & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–9.CrossRefGoogle ScholarPubMed
Conde, J. R., Hoyos, A. L., Martínez, E. D., et al. (2005). Extrauterine life duration and ontogenic EEG parameters in preterm newborns with and without major ultrasound brain lesions. Clinical Neurophysiology, 116, 2796–809.CrossRefGoogle ScholarPubMed
Prida, L. M., Huberfeld, G., Cohen, I., et al. (2006). Threshold behavior in the initiation of hippocampal population bursts. Neuron, 49, 131–42.CrossRefGoogle ScholarPubMed
Graaf-Peters, V. B. & Hadders-Algra, M. (2006). Ontogeny of the human central nervous system: what is happening when?Early Human Development, 82, 257–66.CrossRefGoogle Scholar
Vries, J. I. & Fong, B. F. (2006). Normal fetal motility: an overview. Ultrasound in Obstetrics and Gynecology, 27, 701–11.CrossRefGoogle ScholarPubMed
Dreyfus-Brisac, C. (1964). The electroencephalogram of the premature infant and full-term newborn. Normal and abnormal development of waking and sleeping patterns. In Neurological and Electroencephalographic Correlative Studies in Infancy, eds. Kellaway, P. & Petersen, I.. London: Grune & Stratton, pp. 186–207.Google Scholar
Dupont, E., Hanganu, I., Kilb, W., et al. (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 439, 79–83.CrossRefGoogle ScholarPubMed
Dzhala, V. I., Talos, D. M., Sdrulla, D. A., et al. (2005). NKCC1 transporter facilitates seizures in the developing brain. Nature Medicine 11, 1205–13.CrossRefGoogle ScholarPubMed
Eyre, J. A. (2007). Corticospinal tract development and its plasticity after perinatal injury. Neuroscience and Biobehavioral Reviews, 31, 1136–49.CrossRefGoogle ScholarPubMed
Fitzgerald, M. (2005). The development of nociceptive circuits. Nature Reviews Neuroscience, 6, 507–20.CrossRefGoogle ScholarPubMed
Friauf, E. & Shatz, C. J. (1991). Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. Journal of Neurophysiology, 66, 2059–71.CrossRefGoogle ScholarPubMed
Geneva, I. E., Krasteva, M. B., & Kostianev, S. S. (2002). Age-related changes of the somatosensory evoked potentials in healthy children. Folia Medica, 44, 13–18.Google ScholarPubMed
Gramsbergen, A. (1976). The development of the EEG in the rat. Developmental Psychobiology, 9, 501–15.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Rosen, I., Vries, L. S., et al. (2006). Amplitude integrated EEG classification and interpretation in preterm and term infants. Neoreviews, 7, c76–87.CrossRefGoogle Scholar
Hevner, R. F. (2000). Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. Journal of Neuropathology and Experimental Neurology, 59, 385–92.CrossRefGoogle ScholarPubMed
Higashi, S., Molnar, Z., Kurotani, T., et al. (2002). Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neuroscience, 115, 1231–46.CrossRefGoogle ScholarPubMed
Higashi, S., Hioki, K., Kurotani, T., et al. (2005). Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). Journal of Neuroscience, 25, 1395–406.CrossRefGoogle Scholar
Hooks, B. M. & Chen, C. (2007). Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron, 56, 312–26.CrossRefGoogle ScholarPubMed
Hrbek, A., Karlberg, P., & Olsson, T. (1973). Development of visual and somatosensory evoked responses in pre-term newborn infants. Electroencephalography and Clinical Neurophysiology, 34, 225–32.CrossRefGoogle ScholarPubMed
Hrbek, A., Karlberg, P., Kjellmer, I., et al. (1977). Clinical application of evoked electroencephalographic responses in newborn infants. I: Perinatal asphyxia. Developmental Medicine and Child Neurology, 19, 34–44.CrossRefGoogle ScholarPubMed
Hüppi, P. S. & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489–97.CrossRefGoogle ScholarPubMed
Innocenti, G. M. & Price, D. J. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955–65.CrossRefGoogle ScholarPubMed
Jovanov-Milosević, N., Benjak, V., & Kostović, I. (2006). Transient cellular structures in developing corpus callosum of the human brain. Collegium Antropologicum, 30, 375–81.Google ScholarPubMed
Judas, M., Rados, M., Jovanov-Milosevic, N., et al. (2005). Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR American Journal of Neuroradiology, 26, 2671–84.Google Scholar
Kanold, P. O. (2009). Subplate neurons: crucial regulators of cortical development and plasticity. Frontiers in Neuroanatomy, 3, a16.CrossRefGoogle ScholarPubMed
Kanold, P. O. & Shatz, C. J. (2006). Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron, 51, 627–38.CrossRefGoogle ScholarPubMed
Katz, L. C. & Crowley, J. C. (2002). Development of cortical circuits: lessons from ocular dominance columns. Nature Reviews Neuroscience, 3, 34–42.CrossRefGoogle ScholarPubMed
Khazipov, R. & Buzsaki, G. (2009). Early patterns of electrical activity in the developing cortex. In Oxford Handbook of Developmental Behavioral Neuroscience, eds. Blumberg, M. S, Freeman, J. H, Robinson, S. R. Oxford University Press (in press).Google Scholar
Khazipov, R. & Luhmann, H. J. (2006). Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends in Neurosciences, 29, 414–18.CrossRefGoogle ScholarPubMed
Khazipov, R., Sirota, A., Leinekugel, X., et al. (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432, 758–61.CrossRefGoogle ScholarPubMed
Kilb, W., Sinning, A., & Luhmann, H. J. (2007). Model-specific effects of bumetanide on epileptiform activity in the in vitro intact hippocampus of the newborn mouse. Neuropharmacology, 53, 524–33.CrossRefGoogle ScholarPubMed
Kostović, I. & Jovanov-Milosević, N. (2006). The development of cerebral connections during the first 20–45 weeks' gestation. Seminars in Fetal and Neonatal Medicine, 11, 415–22.CrossRefGoogle Scholar
Kostović, I. & Judas, M. (2006). Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Developmental Medicine and Child Neurology, 48, 388–93.CrossRefGoogle ScholarPubMed
Kostović, I. & Judas, M. (2007). Transient patterns of cortical lamination during prenatal life: do they have implications for treatment?Neuroscience and Biobehavioral Reviews, 31, 1157–68.CrossRefGoogle ScholarPubMed
Kostović, I. & Rakic, P. (1990). Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. Journal of Comparative Neurology, 297, 441–70.CrossRefGoogle ScholarPubMed
Kozuma, S., Okai, T., Ryo, E., et al. (1998). Differential developmental process of respective behavioral states in human fetuses. American Journal of Perinatology, 15, 203–8.CrossRefGoogle ScholarPubMed
Lamblin, M. D., Andre, M., Challamel, M. J., et al. (1999). Electroencephalography of the premature and term newborn. Maturational aspects and glossary. Neurophysiologie Clinique, 29, 123–219.CrossRefGoogle ScholarPubMed
Lauronen, L., Nevalainen, P., Wikström, H., et al. (2006). Immaturity of somatosensory cortical processing in human newborns. NeuroImage, 33, 195–203.CrossRefGoogle ScholarPubMed
Lessmann, V., Gottmann, K., & Malcangio, M. (2003). Neurotrophin secretion: current facts and future prospects. Progress in Neurobiology, 69, 341–74.CrossRefGoogle ScholarPubMed
Long, M. A., Cruikshank, S. J., Jutras, M. J., et al. (2005). Abrupt maturation of a spike-synchronizing mechanism in neocortex. Journal of Neuroscience, 25, 7309–16.CrossRefGoogle ScholarPubMed
Lüchinger, A. B., Hadders-Algra, M., Kan, C. M., et al. (2008). Fetal onset of general movements. Pediatric Research, 63, 191–5.CrossRefGoogle ScholarPubMed
McQuillen, P. S. & Ferriero, D. M. (2005). Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathology, 15, 250–60.CrossRefGoogle ScholarPubMed
Meyerson, B. A. (1968). Ontogeny of interhemispheric functions. An electrophysiological study in pre- and postnatal sheep. Acta Physiologica Scandinavica Supplementum, 312, 1–111.Google ScholarPubMed
Michel, C. M., Murray, M. M., Lantz, G., et al. (2004). EEG source imaging. Clinical Neurophysiology, 115, 2195–222.CrossRefGoogle ScholarPubMed
Milh, M., Kaminska, A., Huon, C., et al. (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cerebral Cortex, 17, 1582–94.CrossRefGoogle ScholarPubMed
Molliver, M. E. (1967). An ontogenetic study of evoked somesthetic cortical responses in the sheep. Progress in Brain Research, 26, 78–91.CrossRefGoogle ScholarPubMed
Momose-Sato, Y., Sato, K., & Kinoshita, M. (2007). Spontaneous depolarization waves of multiple origins in the embryonic rat CNS. European Journal of Neuroscience, 25, 929–44.CrossRefGoogle ScholarPubMed
Pangratz-Fuehrer, S., Rudolph, U., & Huguenard, J. R. (2007). Giant spontaneous depolarizing potentials in the developing thalamic reticular nucleus. Journal of Neurophysiology, 97, 2364–72.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Amedi, A., Fregni, F., et al. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377–401.CrossRefGoogle ScholarPubMed
Perkins, L., Hughes, E., Srinivasan, L., et al. (2008). Exploring cortical subplate evolution using magnetic resonance imaging of the fetal brain. Developmental Neuroscience, 30, 211–20.CrossRefGoogle ScholarPubMed
Persson, H. E. (1973). Development of somatosensory cortical functions: an electrophysiological study in prenatal sheep. Acta Physiologica Scandinavica Supplementum, 394, 1–64.Google ScholarPubMed
Pierrat, V., Goubet, N., Peifer, K., et al. (2007). How can we evaluate developmental care practices prior to their implementation in a neonatal intensive care unit?Early Human Development, 83, 415–18.CrossRefGoogle Scholar
Prayer, D., Kasprian, G., Krampl, E., et al. (2006). MRI of normal fetal brain development. European Journal of Radiology, 57, 199–216.CrossRefGoogle ScholarPubMed
Rados, M., Judas, M., & Kostović, I. (2006). In vitro MRI of brain development. European Journal of Radiology, 57, 187–98.CrossRefGoogle ScholarPubMed
Ramakers, G. J. (2005). Neuronal network formation in human cerebral cortex. Progress in Brain Research, 147, 1–14.CrossRefGoogle ScholarPubMed
Scher, M. (2004). Electroencephalography of the newborn: normal and abnormal features. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, eds. Niedermeyer, E. & Silva, F. Lopes. Boston, MA: Lippincott-Williams & Wilkins.Google Scholar
Schouenborg, J. (2008). Action-based sensory encoding in spinal sensorimotor circuits. Brain Research Reviews, 57, 111–17.CrossRefGoogle ScholarPubMed
Schuchmann, S., Schmitz, S., Rivera, C., et al. (2006). Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nature Medicine, 12, 817–23.CrossRefGoogle ScholarPubMed
Sipilä, S. T. & Kaila, K. (2008). GABAergic control of CA3-driven network events in the developing hippocampus. Results and Problems in Cell Differentiation, 44, 99–121.CrossRefGoogle ScholarPubMed
Sipilä, S. T., Huttu, K., Soltesz, I., et al. (2005). Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. Journal of Neuroscience, 25, 5280–9.CrossRefGoogle ScholarPubMed
Sipilä, S. T., Schuchmann, S., Voipio, J., et al. (2006). The Na-K-Cl cotransporter (NKCC1) promotes sharp waves in the neonatal rat hippocampus. Journal of Physiology, 573, 765–73.CrossRefGoogle Scholar
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137, 1087–106.CrossRefGoogle ScholarPubMed
Thordstein, M., Löfgren, N., Flisberg, A., et al. (2005). Infraslow EEG activity in burst periods from post asphyctic full term neonates. Clinical Neurophysiology, 116, 1501–6.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J. & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155–68.CrossRefGoogle ScholarPubMed
Vanhatalo, S. & Kaila, K. (2006). Development of neonatal EEG activity: from phenomenology to physiology. Seminars in Fetal and Neonatal Medicine, 11, 471–8.CrossRefGoogle ScholarPubMed
Vanhatalo, S. & Lauronen, L. (2006). Neonatal SEP – back to bedside with basic science. Seminars in Fetal and Neonatal Medicine, 11, 464–70.CrossRefGoogle ScholarPubMed
Vanhatalo, S. & Nieuwenhuizen, O. (2000). Fetal pain?Brain Development, 22, 45–50.CrossRefGoogle ScholarPubMed
Vanhatalo, S., Voipio, J., & Kaila, K. (2005a). Full-band EEG (FbEEG): an emerging standard in electroncephalography. Clinical Neurophysiology, 116, 1–8.CrossRefGoogle Scholar
Vanhatalo, S., Palva, J. M., Andersson, S., et al. (2005b). Slow endogenous activity transients and developmental expression of K+-Cl- cotransporter 2 in the immature human cortex. European Journal of Neuroscience, 22, 2799–804.CrossRefGoogle ScholarPubMed
Vanhatalo, S., Metsäranta, M., & Andersson, S. (2008). High-fidelity recording of brain activity in the extremely preterm babies: feasibility study in the incubator. Clinical Neurophysiology, 119, 439–45.CrossRefGoogle ScholarPubMed
Vanhatalo, S., Hellström-Westas, L., & Vries, L. S. (2009a). Bumetanide for neonatal seizures: based on evidence or enthusiasm?Epilepsia, 50, 1292–3.CrossRefGoogle ScholarPubMed
Vanhatalo, S., Jousmäki, V., Andersson, S., et al. (2009b). An easy and practical method for routine, bedside testing of somatosensory systems in extremely low birth weight infants (ELBW). Pediatric Research, doi: 10.1203/PDR.0b013e3181be181be9d66.CrossRef
Verley, R. (1977). The postnatal development of the functional relationships between the thalamus and the cerebral cortex in rats and rabbits. Electroencephalography and Clinical Neurophysiology, 43, 679–90.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×