Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-31T23:54:18.576Z Has data issue: false hasContentIssue false

11 - Fetal and neonatal development of the auditory system

from Section 2 - Sensory systems and behavior

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction: traditional and modern biological approaches to the development of the ear

The ear is a doorway to the brain – an extension of the brain that reaches out to the periphery to collect and form structural images of sounds in the milieu. The ear informs the brain and hence the organism of the imperative sounds of development, communication, and survival. The complex hearing apparatus that forms the “ear” provides the foundation for auditory interactions with the environment and serves as the essential component of two-way communication between organisms. In mammals, the mechanical vibrations of air particles that form the physical dimension of sound are collected by the external ear, and amplified and channeled through a narrow canal within the skull to reach the sensitive eardrum or tympanic membrane. The external auditory canal and the tympanic membrane form the first section of the superbly designed mammalian ear, which is an intricate sensory system composed of a series of complicated subsystems, linked in series, to perform vibro-mechanical conduction, hydrostatic pressure matching, and mechanoelectrical transduction (Fig. 11.1). Each of these unique subsystems must be intact for sound to optimally reach the eighth cranial nerve, higher auditory tracts, nuclei and auditory cortex of the brain to initiate sound perception. Auditory stimuli that are processed by the contiguous external, middle, and internal (cochlear) components of the ear system are conveyed as neuro-electrical signals to the brain by the eighth cranial nerve.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 163 - 184
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,American Academy of Pediatrics. (1995). Joint Committee on Infant Hearing 1994 position statement. Pediatrics, 95, 152–6.Google Scholar
,American Speech-Language-Hearing Association. (2007). Executive Summary for JCIH Year 2007 Position Statement: Principles and guidelines for early hearing detection and ear intervention. Available at: www.asha.org (accessed 20 October, 2009).
Anniko, M. & Wikström, S. O. (1984). Pattern formation of the otic placode and morphogenesis of the otocyst. American Journal of Otolaryngology, 5, 373–81.CrossRefGoogle ScholarPubMed
Anson, B. J. & Davies, J. (1980). Embryology of the ear: developmental anatomy of the ear. In Otolaryngology, Vol. 1, eds. Paparella, M. M., Shumrick, D. A., Meyerhoff, W. L.et al. Philadelphia, PA: W. B. Saunders Co.Google Scholar
Arnold, J. S., Braunstein, E. M., Ohyama, T., et al. (2006). Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Human Molecular Genetics, 15, 1629–39.CrossRefGoogle ScholarPubMed
Bergstrom, L. (1980). Pathology of congenital deafness: present status and future priorities. Annals of Otology, Rhinology and Laryngology, 89, 31–2.CrossRefGoogle ScholarPubMed
Bermingham, N. A., Hassan, B. A., Price, S. D., et al. (1999). Math 1: an essential gene for the generation of inner ear hair cells. Science, 284, 1837–41.CrossRefGoogle Scholar
Borg, E. & Counter, S. A. (1989). The middle ear muscles. Scientific American, 260, 74–80.CrossRefGoogle Scholar
Brown, S. D. & Steel, K. P. (1994). Genetic deafness – progress in mouse models. Human Molecular Genetics, 3, 1453–6.CrossRefGoogle ScholarPubMed
Burton, Q., Cole, L. K., Mulheisen, M., et al. (2004). The role of Pax2 in mouse inner ear development. Developmental Biology, 272, 161–75.CrossRefGoogle ScholarPubMed
Carpenter, E. M., Goddard, J. M., Chisaka, O., et al. (1993). Loss of Hox-A-1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development, 118, 1963–75.Google ScholarPubMed
Chen, C. P., Lin, S. P., Chang, T. Y., et al. (2002). Perinatal imaging findings of inherited Sotos syndrome. Prenatal Diagnosis, 10, 887–92.CrossRefGoogle Scholar
Chen, Q. & Levine, D. (2001). Fast fetal magnetic resonance imaging techniques. Topics in Magnetic Resonance Imaging, 12, 67–79.CrossRefGoogle ScholarPubMed
Chiappa, K. H. (ed.) (1997). Evoked Potentials in Clinical Medicine, 3rd edn. Philadelphia, PA: Lippincott-Raven.
Chisaka, O., Musci, T. S., & Capecchi, M. R. (1992). Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature, 355, 516–20.CrossRefGoogle ScholarPubMed
Clements, H., Duncan, K. R., & Fielding, K. (2000). Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. British Journal of Radiology, 73, 190–194.CrossRefGoogle ScholarPubMed
Counter, S. A. & Tsao, P. (1986). Morphology of the seagull's inner ear. Acta Oto-laryngologica, 101, 34–42.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298, 2013–15.CrossRefGoogle ScholarPubMed
Kok, Y. J., Maarel, S. M., Bitner-Glindzicz, M., et al. (1995). Association between X-linked mixed deafness and mutations in the POU domain gene (POU3F4). Science, 267, 685–8.CrossRefGoogle Scholar
Deol, M. S. (1966). Influence of the neural tube on the differentiation of the inner ear in the mammalian embryo. Nature, 209, 219–20.CrossRefGoogle ScholarPubMed
Deol, M. S. (1980). Genetic malformations of the inner ear in the mouse and in the man. Birth Defects Original Article Series, 16, 243–61.Google Scholar
Downs, M. P. (1967). A guide to newborn and infant hearing screening programs. Archives of Otolaryngology, 85, 15–22.CrossRefGoogle ScholarPubMed
Downs, M. P. & Yoshinaga-Itano, C. (1999). The efficacy of early identification and intervention for children with hearing impairment. Pediatric Clinics of North America, 46, 79–87.CrossRefGoogle ScholarPubMed
Eisenberg, R. (1970). Auditory Competence in Early Life. Baltimore, MD: University Park Press.Google Scholar
Ekker, M., Akimenko, M. A., Bremiller, R., et al. (1992). Regional expression of three homeobox transcripts in the inner ear of zebrafish. Neuron, 9, 27–35.CrossRefGoogle ScholarPubMed
Ernfors, P., Vandewater, T., Loring, J., et al. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron, 14, 1153–64.CrossRefGoogle ScholarPubMed
Estivill, X., Fortina, P., Surrey, S., et al. (1998). Connexin 26 mutations in sporadic and inherited deafness. Lancet, 351, 394–8.CrossRefGoogle Scholar
Fekete, D. M. (1996). Cell fate specification in the inner ear. Current Opinion in Neurobiology, 6, 533–41.CrossRefGoogle ScholarPubMed
Fekete, D. M. (1999). Development of the vertebrate ear: insights from knockouts and mutants. Trends in Neuroscience, 22, 263–9.CrossRefGoogle ScholarPubMed
Fekete, D. M. (2008). Cochlear development. In New Encyclopedia of Neuroscience (NRSC) No.: 00252. Amsterdam: Elsevier Ltd.Google Scholar
Fekete, D. M. (2009). Development of the ear. In Inborn Errors of Development, 2nd edn. Epstein, C. J, Erickson, R. P, Wynshaw-Boris, W, eds. Oxford University Press.Google Scholar
Fekete., D. M. & Campero, A. M. (2007). Axon guidance in the inner ear. International Journal of Developmental Biology, 51, 549–56.CrossRefGoogle ScholarPubMed
Flock, Å. (1980). Contractile proteins in hair cells. Hearing Research, 2, 411–12.CrossRefGoogle ScholarPubMed
Flock, Å. & Cheung, H. C. (1977). Actin filaments in sensory hairs of inner ear receptor cells. Journal of Cell Biology, 75, 339–43.CrossRefGoogle ScholarPubMed
Fritzsch, B. (1996a). How does the urodele ear develop?International Journal of Developmental Biology, 40, 763–71.Google ScholarPubMed
Fritzsch, B. (1996b). Development of the labyrinthine efferent system. Annals of the New York Academy of Sciences, 781, 21–33.CrossRefGoogle ScholarPubMed
Fritzsch, B., Silos-Santiago, I., Smeyene, A., et al. (1995). Reduction and loss of inner ear innervation in trkB and trkC receptor knock out mice: a whole mount DiL and SEM analysis. Auditory Neuroscience, 1, 401–17.Google Scholar
Fritzsch, B., Silos-Santiago, I., Bianchi, L. M., et al. (1997). The role of neurotrophic factors in regulating the development of inner ear innervation. Trends of Neuroscience, 20, 159–64.CrossRefGoogle ScholarPubMed
Fritzsch, B., Tessarollo, L., Coppola, E., et al. (2004). Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Progress in Brain Research, 146, 265–78. Review.CrossRefGoogle ScholarPubMed
Fritzsch, B., Pauley, S., Matei, V., et al. (2005a). Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain. Hearing Research, 206, 52–63.CrossRefGoogle Scholar
Fritzsch, B., Matei, V. A., Nichols, D. H., et al. (2005b). Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Developmental Dynamics, 233, 570–83.CrossRefGoogle ScholarPubMed
Fulford, J., Vadeyar, S. H., Dodampahala, S. H., et al. (2003). Fetal brain activity in response to a visual stimulus. Human Brain Mapping, 20, 239–45.CrossRefGoogle ScholarPubMed
Fulford, J., Vadeyar, S. H., Dodampahala, S. H., et al. (2004). Fetal cortical and haemodynamic response to a vibro-acoustic stimulus. Human Brain Mapping, 22, 116–21.CrossRefGoogle Scholar
Gallagher, B. C., Henry, J. J., & Grainger, R. M. (1996). Inductive processes leading to inner ear formation during Xenopus development. Developmental Biology, 10, 95–107.CrossRefGoogle Scholar
Glenn, O. A. & Barkovich, A. J. (2006a). Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR American Journal of Neuroradiology, 27, 1604–11.Google ScholarPubMed
Glenn, O. A. & Barkovich, J. (2006b). Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. AJNR American Journal of Neuroradiology, 27, 1807–14.Google ScholarPubMed
Gong, Q. Y., Roberts, N., Garden, A. S., et al. (1998). Fetal and fetal brain volume estimation in the third trimester of human pregnancy using gradient echo MR imaging. Magnetic Resonance Imaging, 16, 235–40.CrossRefGoogle ScholarPubMed
Gulya, A. J. (1990). Developmental anatomy of the ear. In Surgery of the Ear, 4th edn., eds. Glasscock, M. E. & Shambaugh, G. E.. Philadelphia, PA: W. B. Saunders, pp. 5–33.Google Scholar
Hardie, N. A. (1998). The consequences of deafness and chronic intracochlear electrical stimulation of the central auditory pathways. Clinical Experimental Pharmacology and Physiology, 25, 303–9.CrossRefGoogle ScholarPubMed
Hardie, N. A., Martsi-McClintock, A., Aitkin, L. M., et al. (1998). Neonatal sensorineural hearing loss affects synaptic density in the auditory midbrain. Neuroreport, 9, 2019–22.CrossRefGoogle ScholarPubMed
Hardisty, R. E., Fleming, J., & Steel, K. P. (1998). The molecular genetics of inherited deafness–current knowledge and recent advances. Journal of Laryngology and Otology, 112, 432–7.CrossRefGoogle ScholarPubMed
Hatch, E. P., Noyes, C. A., Wang, X., et al. (2007). Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development, 20, 3615–25.CrossRefGoogle Scholar
Holme, R. H. & Steel, K. P. (1999). Genes involved in deafness. Current Opinion in Genetics and Development, 9, 309–14.CrossRefGoogle ScholarPubMed
Homae, F., Watanabe, H., Nakano, T., et al. (2007). Prosodic processing in the developing brain. Neuroscience Research, 59, 29–39.CrossRefGoogle ScholarPubMed
Hudspeth, A. J. (1989). How the ear's works work. Nature, 341, 397–404.CrossRefGoogle ScholarPubMed
Hykin, J., Moore, R., Duncan, K., et al. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet, 354, 645–6.CrossRefGoogle ScholarPubMed
Jackler, R. K., Luxford, W. M., & House, W. F. (1987). Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope, 97, 2–14.CrossRefGoogle ScholarPubMed
Jacobson, J. T., Jacobson, C. A., & Spahr, R. C. (1990). Automated and conventional ABR screening techniques in high-risk infants. Journal of the American Academy of Audiology, 1, 187–95.Google ScholarPubMed
Jardri, R., Pins, D., Houfflin-Debarge, V., (2008). Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. NeuroImage, 42, 10–8.CrossRefGoogle ScholarPubMed
Johansson, B., Wedenberg, E., & Weston, B. (1964). Measurement of tone response by the human fetus. Acta Oto-laryngologica, 57, 188–92.CrossRefGoogle Scholar
Karis, A., Pata, I., Doorninck, J. H., et al. (2001). Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. Journal of Comparative Neurology, 429, 615–30.3.0.CO;2-F>CrossRefGoogle Scholar
Kemp, D. T. (1978). Stimulated otoacoustic emissions from within the human auditory system. Journal of the Acoustical Society of America, 64, 1386–91.CrossRefGoogle Scholar
Kenna, M. A. (1990). The ear and related structures: embryology and developmental anatomy of the ear. In Pediatric Otolaryngology, 2nd edn, eds. Bluestone, C. D., Stool, S. E. & Scheetz, M. D., Philadelphia, PA: W. B. Saunders, pp. 77–87.Google Scholar
Keynes, R. & Krumlauf, R. (1994). Hox genes and regionalization of the nervous system. American Review of Neuroscience, 17, 109–32.CrossRefGoogle Scholar
Kotak, V. C. & Sanes, D. H. (1997). Deafferentation weakens excitatory synapses in the developing central auditory system. European Journal of Neuroscience, 9, 2340–7.CrossRefGoogle ScholarPubMed
Ladher, R. K., Anakwe, K. U., Gurney, A. L., et al. (2000). Identification of synergistic signals initiating inner ear development. Science, 290, 1965–7.CrossRefGoogle ScholarPubMed
Lan, L. M., Yamashita, Y., Tang, Y., et al. (2000). Normal fetal brain development: MR imaging with a half-Fourier rapid acquisition with relaxation enhancement sequence. Radiology, 215, 205–10.CrossRefGoogle ScholarPubMed
Lautermann, J., ten Cate, W. J., Altenhoff, P., et al. (1998). Expression of the gap–junction connexins 26 and 30 in the rat cochlea. Cell Tissue Research, 294, 415–20.CrossRefGoogle ScholarPubMed
Lavigne-Rebillard, M. & Pujol, R. (1987). Hair cell innervation in the fetal human cochlea. Acta Oto-laryngologica, 105, 398–402.CrossRefGoogle Scholar
León, Y., Sánchez-Galiano, S., & Gorospe, I. (2004). Programmed cell death in the development of the vertebrate inner ear. Apoptosis, 9, 255–64.CrossRefGoogle ScholarPubMed
Levine, D. & Barnes, P. D. (1999). Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology, 210, 751–8.CrossRefGoogle ScholarPubMed
Levy, S. R. (1997). Brainstem auditory evoked potentials in pediatrics. In Evoked Potentials in Clinical Medicine, 3rd edn., ed. Chiappa, K. H.. Philadelphia, PA: Lippincott-Raven.Google Scholar
Lewis, A. B. (1978). A gene complex controlling segmentation in Drosophila. Nature, 276, 565–70.CrossRefGoogle ScholarPubMed
Lutman, M. E. (2000). Techniques for neonatal hearing screening. Seminars in Hearing, 21, 367–78.CrossRefGoogle Scholar
Lynch, E. D., Lee, M. K., Morrow, J. E., et al. (1997). Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science, 278, 1313–18.CrossRefGoogle ScholarPubMed
Mansour, S. L., Goddard, J. M., & Capecchi, M. R. (1993). Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development, 117, 13–28.Google ScholarPubMed
McKay, I. J., Lewis, J., & Lumsden, A. (1996). The role of FGF-3 inner ear development: an analysis in normal and kreisler mutant mice. Developmental Biology, 174, 370–8.CrossRefGoogle ScholarPubMed
McPhee, J. R. & Water, T. R. (1988). Structural and functional development of the ear. In Physiology of the Ear, eds. Jahn, A. F. & Santos-Sacchi, J.. New York: Raven Press.Google Scholar
Moore, D. R. (1985). Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Oto-laryngologica, 421 (Suppl.), 19–30.CrossRefGoogle ScholarPubMed
Moore, D. R. (1991). Hearing loss and auditory brain stem development. In The Fetal and Neonatal Brain Stem, ed. Hanson, M. A.. Cambridge: Cambridge University Press.Google Scholar
Moore, K. L. (1988). Essentials of Human Embryology. Toronto: B. C. Becker.Google Scholar
Moore, R. J., Vadeyar, S., Fulford, J., et al. (2001). Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Human Brain Mapping, 12, 94–9.3.0.CO;2-E>CrossRefGoogle Scholar
Moraes, F., Nóvoa, A., Jerome-Majewska, L. A., et al. (2005). Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mechanisms of Development, 122, 199–212.CrossRefGoogle ScholarPubMed
Morsli, H., Choo, D., Ryan, A., et al. (1998). Development of the mouse inner ear and origin of its sensory organs. Journal of Neuroscience, 18, 3327–35.CrossRefGoogle ScholarPubMed
Morsli, H., Tuorto, F., Choo, D., et al. (1999). Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development, 126, 2335–43.Google ScholarPubMed
Nishikori, T., Hatta, T., Kawauchi, H., et al. (1999). Apoptosis during inner ear development in human and mouse embryos: an analysis by computer-assisted three-dimensional reconstruction. Anatomy and Embryology, 200, 19–26.CrossRefGoogle ScholarPubMed
Northern, J. L., & Downs, M. P. (1991). Hearing in ChildrenBaltimore, MD: Williams & Wilkins.Google Scholar
O'Rahill, R. & Müller, F. (1996). Human Embryology and Teratology, 2nd edn. Chichester: John Wiley & Sons, p. 468.Google Scholar
Pannekamp, A., Weber, C., & Friederici, A. D. (2006). Prosodic processing at the sentence level in infants. Neuroreport, 17, 675–8.CrossRefGoogle ScholarPubMed
Pappas, D. G. (1983). Hearing impairments and vestibular abnormalities among children with subclinical cytomegalovirus. Annals of Otology, Rhinology and Laryngology, 92, 552–7.CrossRefGoogle ScholarPubMed
Peck, J. E. (1994). Development of hearing. Part II. Embryology. Journal of the American Academy of Audiology, 5, 359–65.Google ScholarPubMed
Peck, J. E. (1995). Development of hearing. Part III. Postnatal development. Journal of the American Academy of Audiology, 6, 113–23.Google ScholarPubMed
Petersen, M. B. & Willems, P. J. (2006). Non-syndromic, autosomal-recessive deafness. Clinical Genetics, 69, 371–92.CrossRefGoogle ScholarPubMed
Petit, C. (1996). Genes responsible for human hereditary deafness: symphony of a thousand. Nature Genetics, 14, 385–91.CrossRefGoogle ScholarPubMed
Phippard, D., Heydemann, A., Lechner, M., et al. (1998). Changes in the subcellular localization of the Brn4 gene product precede mesenchymal remodeling of the otic capsule. Hearing Research, 120, 77–85.CrossRefGoogle ScholarPubMed
Pirvola, U., Ylikoski, J., Palgi, J., et al. (1992). Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proceedings of the National Academy of Sciences of the U S A, 89, 9915–19.CrossRefGoogle ScholarPubMed
Pirvola, U., Spencer-Dean, B., Xing-Qun, L. et al. (2000). FGF/FGFR-2 (IIIb) Signaling is essential for inner ear morphogenesis. Journal of Neuroscience, 16, 6125–34.CrossRefGoogle Scholar
Piza, J., Northrop, C., & Eavey, R. D. (1998). Embryonic middle ear mesenchyme disappears by redistribution. Laryngoscope, 108, 1378–82.CrossRefGoogle ScholarPubMed
Redline, R., Neish, A., Holmes, L., et al. (1992). Biology of disease: homeobox genes and congenital malformations. Laboratory Investigation, 66, 659–70.Google Scholar
Repressa, J., Frenz, D. A., & Water, T. R. (2000). Genetic patterning of embryonic inner ear development. Acta Oto-laryngologica, 120, 5–10.Google Scholar
Ruben, R. J., Water, T. R., & Steel, K. P. (1991).Genetics of hearing impairment. Annals of the New York Academy of Sciences, 630, 329.CrossRefGoogle ScholarPubMed
Rutherford, M., Jiang, S., Allsop, J., et al., (2008). MR imaging methods for assessing fetal brain development. Developmental Neurobiology, 68, 700–11.CrossRefGoogle ScholarPubMed
Sadler, T. W. (1985). Ear. In Langman's Medical Embryology, 5th edn. Baltimore, MD: Williams & Wilkins.Google Scholar
Sadler, T. W. (1990). Langman's Medical Embryology, 6th edn. Baltimore, MD: Williams & Wilkins.Google Scholar
Salamy, A. (1984). Maturation of the auditory brainstem response from birth through early childhood. Journal of Clinical Neurophysiology, 1, 293–329.CrossRefGoogle ScholarPubMed
Salamy, A. & McKean, C. M. (1976). Postnatal development of human brainstem potentials during the first year of life. Electroencephalography and Clinical Neurophysiology, 40, 418–26.CrossRefGoogle ScholarPubMed
Schecterson, L. C. & Bothwell, M. (1994). Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hearing Research, 73, 92–100.CrossRefGoogle ScholarPubMed
Sher, A. E. (1971). The embryonic and postnatal development of the inner ear of the mouse. Acta Oto-laryngologica, 285 (Suppl.), 1–20.Google ScholarPubMed
Simon, E. M., Goldstein, R. B., Coakley, F. V., et al. (2000). Fast MR imaging of fetal CNS anomalies in utero. AJNR American Journal of Neuroradiology, 21, 1688–98.Google ScholarPubMed
Starr, A., Amlie, R. N., Martin, W. H., et al. (1977). Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 60, 831–9.Google ScholarPubMed
Steel, K. P. & Brown, S. D. (1996). Genetics of deafness. Current Opinions in Neurobiology, 6, 520–5.CrossRefGoogle ScholarPubMed
Tassabehji, M., Newton, V. E., & Read, A. P. (1992). Waardenberg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genetics, 8, 251–5.CrossRefGoogle Scholar
Torres, M. & Giraldez, F. (1998). The development of the vertebrate inner ear. Mechanisms of Development, 71, 5–21.CrossRefGoogle ScholarPubMed
Camp, G., Snoeckx, R. L., Hilgert, N., et al. (2006). A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. American Journal of Human Genetics, 79, 449–57.CrossRefGoogle ScholarPubMed
Water, T. R. (1988). Tissue interactions and cell differentiation: neurone–sensory cell interaction during otic development. Development, 103 (Suppl.), 185–93.Google ScholarPubMed
Water, T. R. & Repressa, J. (1991). Tissue interactions and growth factors that control development of the inner ear. Neural tube-otic anlage interaction. Annals of the New York Academy of Science, 630, 116–28.CrossRefGoogle ScholarPubMed
Vendrell, V., Carnicero, E., Giraldez, F., et al. (2000). Induction of inner ear fate by FGF3. Development, 127, 2011–19.Google ScholarPubMed
Bartheld, C. S., Patterson, S. L., Heuer, J. G., et al. (1991). Expression of nerve growth factor (NGF) receptors in the developing inner ear of the chick and rat. Development, 113, 455–70.Google Scholar
Werker, J. F. (1989). Becoming a native listener. American Scientist, 77, 54–9.Google Scholar
,Wessex Universal Neonatal Hearing Screening Trial Group. (1998). Controlled trial of universal neonatal screening for early identification of permanent childhood hearing impairment. Lancet, 352, 1957–64.CrossRefGoogle Scholar
Whitehead, M. C. (1986). Development of the cochlea. In Neurobiology of Hearing, eds. Alschuler, R. A., Hoffman, D. W., & Bobbin, R. P.. New York: Raven Press.Google Scholar
Whitfield, T. T., Granato, M., Eeden, F. J., et al. (1996). Mutations affecting development of the zebrafish inner ear and lateral line. Development, 123, 241–54.Google ScholarPubMed
Wright, T. J. & Mansour, S. L. (2003). FGF signaling in ear development and innervation. Current Topics in Developmental Biology, 57, 225–59.CrossRefGoogle ScholarPubMed
Wright, T. J., Hatch, E. P., Karabagli, H., et al. (2003). Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Developmental Dynamics, 228, 267–72.CrossRefGoogle ScholarPubMed
Wu, D. K. & Oh, S. H. (1996). Sensory organ generation in the chick inner ear. Journal of Neuroscience, 15, 6454–62.CrossRefGoogle Scholar
Xiang, M., Maklad, A., Pirvola, U., et al. (2003). Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neuroscience, 4, 2.CrossRefGoogle ScholarPubMed
Yoshinaga-Itano, C. (2000). Successful outcomes for deaf and hard-of-hearing children. Seminars in Hearing, 21, 309–26.CrossRefGoogle Scholar
Zelante, L., Gasparini, P., Estivill, X., et al. (1997). Connexin 26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Human Molecular Genetics, 6, 1605–9.CrossRefGoogle Scholar
Zelarayan, L. C., Vendrell, V., Alvarez, Y., et al. (2007). Differential requirements for FGF3, FGF8 and FGF10 during inner ear development. Developmental Biology, 308, 379–91.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×