Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T09:22:24.933Z Has data issue: false hasContentIssue false

2 - Entanglement and subsystems, entanglement beyond subsystems, and all that

from Part I - Quantum entanglement and non-locality

Published online by Cambridge University Press:  04 August 2010

Alisa Bokulich
Affiliation:
Boston University
Gregg Jaeger
Affiliation:
Boston University
Get access

Summary

Introduction

The first realization that the validity of the quantum superposition principle in the Hilbert space describing a composite quantum system may give rise to fundamentally new correlations between the constituent subsystems came in the landmark 1935 paper by Einstein, Podolsky, and Rosen (EPR), where it was shown how the measurement statistics of observables in certain quantum states could not be reproduced by assigning definite wavefunctions to individual subsystems. It was in response to the EPR paper that Schrödinger, in the same year, coined the term entanglement (Verschränkung) to acknowledge the failure of classical intuition in describing the relationship between the “parts” and the “whole” in the quantum world:

Whenever one has a complete expectation catalog – a maximum total knowledge – a ψ function – for two completely separated bodies, …then one obviously has it also for the two bodies together. But the converse is not true. The best possible knowledge of a total system does not necessarily include total knowledge of all its parts, not even when these are fully separated from each other and at the moment are not influencing each other at all.

While Bell's strengthening of the original EPR-paradox setting and the subsequent experimental verification of Bell inequalities irreversibly changed the perception of entanglement from a property of counterintuitive “spookiness” to (beyond reasonable doubt) an experimental reality, the concept and implications of entanglement continue to be associated with a host of physical, mathematical, and philosophical challenges. In particular, investigation of entanglement in both its qualitative and quantitative aspects has intensified under the impetus of quantum information science (QIS).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×