Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T12:42:30.478Z Has data issue: false hasContentIssue false

6 - Tectonics of small bodies

Published online by Cambridge University Press:  30 March 2010

Peter C. Thomas
Affiliation:
Center for Radiophysics and Space Research, Cornell University, Ithaca
Louise M. Prockter
Affiliation:
Applied Physics Laboratory, Laurel
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Solar system bodies smaller than ~200 km mean radius have little internal heat energy to drive tectonics typical of the terrestrial environment. Short-lived high stresses from impacts or long-term, low stresses are the primary shapers of these bodies. This chapter provides an overview of the basic features and processes that can be regarded as small-body tectonics.

Introduction: types of small bodies, their properties, and environments

Small bodies of the solar system are here taken to be those too small for gravitationally driven viscous relaxation to have determined their shapes. This definition restricts consideration to objects less than about 150 km radius (Johnson and McGetchin, 1973; Thomas, 1989). Within this definition are some dozens of satellites of planets, and thousands of asteroids, cometary nuclei, and Centaur and Kuiper-Edgeworth belt objects (Binzel et al., 2003). As of early 2006, spacecraft have visited small satellites, asteroids, and four cometary nuclei (Figure 6.1). Resolved information on these objects is dominated by the NEAR mission that orbited and then landed on 433 Eros, by images of the Martian satellites, Phobos and Deimos, and by images of comet Tempel 1 (A'Hearn et al., 2005). Radar images of near-Earth objects are beginning to show some details of asteroid shapes and surface features (Hudson et al., 2003). Meteorites provide small samples of asteroids, though only in the case of asteroid Vesta (larger than the size range considered here) are there positive connections of meteorite samples to a specific object (Binzel et al., 1993; Keil, 2002).

Type
Chapter
Information
Planetary Tectonics , pp. 233 - 263
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, H. R. and Oberbeck, V. R. (1974). Roche limit of a solid body. Astrophys. J., 191, 577–588.CrossRefGoogle Scholar
A'Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V. (1992). The ensemble properties of comets: Results from narrow band photometry of 85 comets, 1976–1992. Icarus, 118, 223–270.CrossRefGoogle Scholar
A'Hearn, M. F.et al. (2005). Deep impact: Excavating comet Tempel 1. Science, 310, 258–264.CrossRefGoogle ScholarPubMed
Asphaug, E. and Benz, W. (1996). Size, density and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus, 121, 225–248.CrossRefGoogle Scholar
Asphaug, E. and Melosh, H. J. (1993). The Stickney impact of Phobos: A dynamical model. Icarus, 101, 144–164.CrossRefGoogle Scholar
Asphaug, E.et al. (1996). Mechanical and geological effects of impact cratering on Ida. Icarus, 120, 158–184.CrossRefGoogle Scholar
Asphaug, E., Ostro, S. J., Hudson, R. S., Scheeres, D. J., and Benz, W. (1998). Disruption of kilometre-sized asteroids by energetic collision. Nature, 393, 437–440.CrossRefGoogle Scholar
Bell, J. F., Davis, D. R., Hartmann, W. K., and Gaffey, M. J. (1989). Asteroids: The big picture. In Asteroids II, ed. Binzel, R. P., Gehrels, T. and Mathews, M. S.. Tucson, AZ: University of Arizona Press, pp. 921–945.Google Scholar
BellIII, J. F.et al. (2002). Near-IR reflectance spectroscopy of 433 Eros from the NIS instrument on the NEAR mission 1: Low phase angle observations. Icarus, 155, 119–144.CrossRefGoogle Scholar
Belton, M. J. S.et al. (1996). The discovery and orbit of 1993 (243) 1 Dactyl. Icarus, 120, 185–199.CrossRefGoogle Scholar
Benner, L.et al (2005). Radar images of near-Earth asteroid 2005 CR37 (abs.). Division of Planetary Sciences, 37, 15.02, 639.
Binzel, R. P. and Xu, S. (1993). Chips off of asteroid 4 Vesta: Evidence for the parent body of achondritic meteorites. Science, 260, 186–191.CrossRefGoogle Scholar
Binzel, R. P., Lupshko, D. F, Di Martino, M., Whiteley, R. J., and Hahn, G. J. (2002). Physical properties of near-Earth objects. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 255–271.Google Scholar
Binzel, R. P.et al. (2003). Interiors of small bodies: Foundations and perspectives. Planet. Space Sci., 51, 443–454.CrossRefGoogle Scholar
Bottke, W. F., Richardson, D. C., Michel, P., and Love, S. G. (1999). 1620 Geographos and 433 Eros: Shaped by planetary tides?Astron. J., 117, 921–1928.CrossRefGoogle Scholar
Bottke, W. F., Cellino, A., Paolichi, P., and Binzel, R. P. (2002). An overview of the asteroids: The Asteroids III perspective. In Asteroids III, ed. Bottke, Jr. W. F., Cellino, A., Paolichi, P. and Binzel, R. P.. Tucson, AZ: University of Arizona Press, pp. 3–15.Google Scholar
Britt, D. T. and Consolmagno, G. J. (2001). Modeling the structure of high-porosity asteroids. Icarus, 152, 134–139.CrossRefGoogle Scholar
Britt, D. T., Yeomans, D., Housen, K., and Consolmagno, C. (2002). Asteroid density, porosity, and structure. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R., Tucson, AZ: University of Arizona Press, pp. 485–499.Google Scholar
Britt, D. T.et al. (2004). The morphology and surface processes of Comet 19/P Borrelly. Icarus, 167, 45–53.CrossRefGoogle Scholar
Brownlee, D. E.et al. (2004). Surface of young Jupiter family comet 81/P Wild 2: View from the Stardust spacecraft. Science, 304, 1764–1769.CrossRefGoogle Scholar
Burns, J. A. (1978). The dynamical evolution and origin of the Martian moons. Vistas Astron., 22, 193–210.CrossRefGoogle Scholar
Chapman, C. R. and McKinnon, W. (1986). Cratering of planetary satellites. In Satellites, ed. Burns, J. and Matthews, M.. Tucson, AZ: University of Arizona Press, pp. 492–580.Google Scholar
Chapman, C. R.et al. (1995). Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida. Nature, 374, 783–785.CrossRefGoogle Scholar
Clark, R. N.et al. (2005). Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature, 435, 66–69.CrossRefGoogle ScholarPubMed
Cheng, A. F.et al. (2002). Small-scale topography of 433 Eros from laser altimetry and imaging. Icarus, 155, 51–74.CrossRefGoogle Scholar
Dobrovolskis, A. (1982). Internal stresses in Phobos and other triaxial bodies. Icarus, 52, 136–148.CrossRefGoogle Scholar
Dombard, A. J. and Freed, A. M. (2002). Thermally induced lineations on the asteroid Eros: Evidence of orbit transfer. Geophys. Res. Lett., 29, doi 10.1029/202GL015181.CrossRefGoogle Scholar
Duennebier, F. (1976). Thermal movement of the regolith. Proc. Lunar Sci. Conf. 7, 1073–1086.Google Scholar
Fujiwara, A. (1991). Stickney-forming impact on Phobos: Crater shape and induced stress distribution. Icarus, 89, 384–391.CrossRefGoogle Scholar
Fujiwara, A. and 21 colleagues (2006). The Rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 312, 1330–1334.CrossRefGoogle ScholarPubMed
Gaffey, M. J., Cloutis, E. A., Kelley, M. S., and Keil, K. S. (2002). Mineralogy of asteroids. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 183–204.Google Scholar
Gault, D. E., Quaide, W. L., and Oberbeck, V. R. (1968). Impact cratering mechanics and structures in shock metamorphism of natural materials. In Shock Metamorphism of Natural Materials, ed. French, B. M. and Short, N. M.. Baltimore MD: Mono Book Co., pp. 87–99.Google Scholar
Gladman, B.et al. (2001). Discovery of 12 satellites of Saturn exhibiting orbital clustering. Nature, 412, 163–166.CrossRefGoogle ScholarPubMed
Goldreich, P., Lithwick, Y., and Sari, R. (2002). Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature, 420, 643–646.CrossRefGoogle ScholarPubMed
Gradie, J. C. and Tedesco, E. F. (1982). Compositional structure of the asteroid belt. Science, 216, 1405–1407.CrossRefGoogle ScholarPubMed
Grimm, R. E. and McSween, H. Y. (1993). Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653–655.Google Scholar
Hilton, J. L. (2002). Asteroid masses and densities. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 103–112.Google Scholar
Housen, K. R., Holsapple, K. A., and Voss, M. E. (1999). Compaction as the origin of the unusual craters on asteroid Mathilde. Nature, 402, 155–157.CrossRefGoogle Scholar
Horstman, K. C., and Melosh, H. J. (1989). Pits in cohesionless materials: Implications for the surface of Phobos. Icarus, 94, 12 433–12 441.Google ScholarPubMed
Hudson, R. S., Ostro, S. J., and Scheeres, D. J. (2003). High resolution model of asteroid 4179 Toutatis. Icarus, 161, 346–355.CrossRefGoogle Scholar
Johnson, T. V. and McGetchin, T. R. (1973). Topography on satellite surfaces and the shape of asteroids. Icarus, 39, 317–351.Google Scholar
Keil, K. (2002). Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 573–584.Google Scholar
Konopliv, A. S.et al. (2002). A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros. Icarus, 160, 289–299.CrossRefGoogle Scholar
Lee, P.et al. (1996). Ejecta blocks on 243 Ida and on other asteroids. Icarus, 120, 87–105.CrossRefGoogle Scholar
Levinson, H. F., Dones, L., and Duncan, M. J. (2001). The origin of Halley-type comets: Probing the Oort cloud. Astron. J., 121, 2253–2267.CrossRefGoogle Scholar
Mantz, A., Sullivan, R., and Veverka, J. (2004). Regolith transport in craters on Eros. Icarus, 167, 197–203.CrossRefGoogle Scholar
Margot, J.-L.et al. (2002). Binary asteroids in the near-Earth object population. Science, 296, 1445–1448.CrossRefGoogle ScholarPubMed
McCoy, T. J.et al. (2001). The composition of 433 Eros: A mineralogical-chemical synthesis. Meteorit. Planet. Sci., 36, 1661–1672.CrossRefGoogle Scholar
McSween, Jr., H. Y., Ghosh, A., Grimm, R. E., Wilson, L., and Young, A. D. (2002). Thermal evolution models of asteroids. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 559–571.Google Scholar
Melosh, H. J. (1989). Impact Cratering. New York: Oxford University Press.Google Scholar
Melosh, H. J. and Stansberry, J. A. (1991). Doublet craters and the tidal disruption of binary asteroids. Icarus, 94, 171–179.CrossRefGoogle Scholar
Merline, W. J., and 12 colleagues (2001). S/2001 (617) 1. International Astronomical Union Circular 7741, 2.
Merline, W. J.et al. (2002). Asteroids do have satellites. In Asteroids III, ed. Bottke, W. F., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 289–312.Google Scholar
Michel, P., Benz, W., and Richardson, D. C. (2003). Disruption of fragmented parent bodies as the origin of asteroid families. Nature, 421, 608–611.CrossRefGoogle ScholarPubMed
Morrison, S., Thomas, P. C., Tiscareno, M. S., Burns, J. A., and Veverka, J. (2009). Grooves on small Saturnian satellites and other objects: Characteristics and significance, Icarus, doi:10.1016/j.icarus.2009.06.003.CrossRefGoogle Scholar
Murray, C. D. and Dermott, S. F. (2000). Solar System Dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nicholson, P. D., Hamilton, D. P., Matthews, K., and Yoder, C. F. (1992). New observations of Saturn's coorbital satellites. Icarus, 100, 464–484.CrossRefGoogle Scholar
Ostro, S. J.et al. (2000). Radar observations of asteroid 216 Kleopatra. Science, 288, 836–839.CrossRefGoogle ScholarPubMed
Pravec, P. and Harris, A. W. (2000). Fast and slow rotation of asteroids. Icarus, 148, 12–20.CrossRefGoogle Scholar
Prockter, L.et al. (2002). Surface expressions of structural features on Eros. Icarus, 155, 75–93.CrossRefGoogle Scholar
Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., BottkeJr., W. F., and Asphaug, E. (2002). Gravitational aggregates: Evidence and evolution. In Asteroids III, ed. Bottke, W., Cellino, A., Paolicci, P. and Binzel, R.. Tucson, AZ: University of Arizona Press, pp. 501–551.Google Scholar
Rivkin, A. S., Brown, R. H., Trilling, D. E., Bell, J. F., and Plassman, J. H. (2002). Near-infrared spectrophotometry of Phobos and Deimos. Icarus, 156, 64–75.CrossRefGoogle Scholar
Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. L., and Wilcox, B. B. (2002). The geology of 433 Eros. Meteorit. Planet. Sci., 37, 1651–1684.CrossRefGoogle Scholar
Shoemaker, E. M. (1963). Impact mechanics at Meteor Crater, Arizona. In The Moon, Meteorites, and Comets, The Solar System, 4, ed. Middlehurst, B. M. and Kuiper, G. P.. Chicago: University of Chicago Press, pp. 301–336.Google Scholar
Soderblom, L. A.et al. (2004). Short-wavelength infrared (1.3–2.6 m) observations of the nucleus of Comet 19P/Borrelly. Icarus, 167, 100–112.CrossRefGoogle Scholar
Sonnett, C. P., Colburn, D. S., and Schwartz, K. (1968). Electrical heating of meteorite parent bodies and planets by dynamo induction from a premain sequence T Tauri “solar wind.”Nature, 219, 924–926.CrossRefGoogle Scholar
Soter, S. and Harris, A. (1977). Are striations on Phobos evidence for tidal stress?Nature, 268, 421–422.CrossRefGoogle Scholar
Stevenson, D. J. (2004). Planetary diversity. Phys. Today, 57, 43–48.CrossRefGoogle Scholar
Sullivan, R.et al. (1996). Geology of 243 Ida. Icarus, 120, 119–139.CrossRefGoogle Scholar
Thomas, P. (1989). The shapes of small satellites. Icarus, 77, 248–277.CrossRefGoogle Scholar
Thomas, P. C.et al. (1994). The shape of Gaspra. Icarus, 107, 23–36.CrossRefGoogle Scholar
Thomas, P. C. (1998). Ejecta emplacement on the Martian satellites. Icarus, 131, 78–106.CrossRefGoogle Scholar
Thomas, P. C. (1999). Large craters on small objects: Occurrence, morphology, and effects. Icarus, 142, 89–96.CrossRefGoogle Scholar
Thomas, P., Veverka, J., Bloom, A., and Duxbury, T. (1979). Grooves on Phobos: Their distribution, morphology, and possible origin, J. Geophys. Res., 84, 8457–8477.CrossRefGoogle Scholar
Thomas, P. C., Veverka, J., Morrison, D., Davies, M., and Johnson, T. V. (1982). Saturn's small satellites: Voyager imaging results. J. Geophys. Res., 88, 8743–8754.CrossRefGoogle Scholar
Thomas, P. C.et al. (1996). The shape of Ida. Icarus, 120, 20–32.CrossRefGoogle Scholar
Thomas, P. C.et al. (2000). Phobos: Regolith and ejecta blocks investigated with Mars Orbiter camera images. J. Geophys. Res., 105, 15 091–15 106.CrossRefGoogle Scholar
Thomas, P. C.et al. (2002). Eros: Shape, topography, and slope processes. Icarus, 155, 18–37.CrossRefGoogle Scholar
Flandern, T. C., Tedesco, E. F., and Binzel, R. P. (1979). Satellites of asteroids. In Asteroids, ed. Gehrels, T.. Tucson, AZ: University of Arizona Press pp. 443–465.Google Scholar
Veverka, J. and Duxbury, T. (1977). Viking observations of Phobos and Deimos: Preliminary results. J. Geophys. Res., 82, 4213–4223.CrossRefGoogle Scholar
Veverka, J.et al. (1994). Discovery of grooves on Gaspra. Icarus, 107, 72–83.CrossRefGoogle Scholar
Veverka, J.et al. (1997). NEAR's flyby of 253 Mathilde: Images of a C asteroid. Science, 278, 2109–2114.CrossRefGoogle Scholar
Veverka, J.et al. (1999). NEAR encounter with asteroid 253 Mathilde: Overview. Icarus, 140, 3–16.CrossRefGoogle Scholar
Veverka, J.et al. (2001). Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith. Science, 292, 484–488.CrossRefGoogle ScholarPubMed
Watters, T. R. and Robinson, M. S. (2003). Boundary element modeling of the Rahe Dorsum thrust fault on asteroid 433 Eros (abs.). Lunar Planet. Sci. Conf. XXXIV, 1928. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Weidenschilling, S. J. (1979). A possible origin for the grooves on Phobos. Nature, 282, 697–698.CrossRefGoogle Scholar
Weidenschilling, S. J., Paolicchi, P., and Zappala, V. (1989). Do asteroids have satellites? In Asteroids II, ed. Binzel, R. P., Gehrels, T., and Mathews, M. S.. Tucson, AZ: University of Arizona Press, pp. 643–660.Google Scholar
Wilkison, S. L.et al. (2002). An estimate of Eros's porosity and implications for internal structure. Icarus, 155, 94–103.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×