Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T04:37:34.425Z Has data issue: false hasContentIssue false

7 - Tectonics of the outer planet satellites

Published online by Cambridge University Press:  30 March 2010

Geoffrey C. Collins
Affiliation:
Wheaton College, Norton
William B. McKinnon
Affiliation:
Washington University, Saint Louis
Jeffrey M. Moore
Affiliation:
NASA Ames Research Center, Moffett Field
Francis Nimmo
Affiliation:
University of California, Santa Cruz
Robert T. Pappalardo
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
Louise M. Prockter
Affiliation:
Applied Physics Laboratory, Laurel
Paul M. Schenk
Affiliation:
Lunar and Planetary Institute, Houston
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Io's surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax.

Type
Chapter
Information
Planetary Tectonics , pp. 264 - 350
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C. B. and Hamilton, D. P. (2006). Neptune's capture of its moon Triton in a binary–planet gravitational encounter. Nature, 441, 192–194.CrossRefGoogle Scholar
Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B. (1996). Gravitational constraints on the internal structure of Ganymede. Nature, 384, 541–543.CrossRefGoogle Scholar
Anderson, J. D., Jacobson, R. A., McElrath, T. P., Moore, W. B., Schubert, G., and Thomas, P. C. (2001). Shape, mean radius, gravity field, and interior structure of Callisto. Icarus, 153, 157–161.CrossRefGoogle Scholar
Aydin, A. (2006). Failure modes of the lineaments on Jupiter's moon, Europa: Implications for the evolution of its icy crust. J. Struct. Geol., 28, 2222–2236.CrossRefGoogle Scholar
Bader, C. and Kattenhorn, S. A. (2007). Formation of ridge-type strike-slip faults on Europa (abs.). Eos Trans. AGU, 88(52) (Fall Meet. Suppl.), P53B–1243.Google Scholar
Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds. (2004). Jupiter: The Planet, Satellites, and Magnetosphere. New York: Cambridge University Press.
Barr, A. C. (2008). Mobile lid convection beneath Enceladus' south polar terrain. J. Geophys. Res., 113, E07009, doi: 10.1029/2008JE003114.CrossRefGoogle Scholar
Barr, A. C. and McKinnon, W. B. (2007). Convection in ice I shells and mantles with self-consistent grain size. J. Geophys. Res., 112, E02012.CrossRefGoogle Scholar
Barr, A. C. and Pappalardo, R. T. (2005). Onset of convection in the icy Galilean satellites: Influence of rheology. J. Geophys. Res., 110, E12005.CrossRefGoogle Scholar
Bart, G. D., Turtle, E. P., Jaeger, W. L., Keszthelyi, L. P., and Greenberg, R. (2004). Ridges and tidal stress on Io. Icarus, 169, 111–126.CrossRefGoogle Scholar
Beeman, M., Durham, W. B., and Kirby, S. H. (1988). Friction of ice. J. Geophys. Res., 93, 7625–7633.CrossRefGoogle Scholar
Benner, L. A. M. and McKinnon, W. B. (1995). Orbital behavior of captured satellites: The effect of solar gravity on Triton's postcapture orbit. Icarus, 114, 1–20.CrossRefGoogle Scholar
Best, M. G. (2003). Igneous and Metamorphic Petrology. Malden, MA: Blackwell.Google Scholar
Bergstralh, J. T., Miner, E. D., and Matthews, M. S., eds. (1991). Uranus. Tucson, AZ: University of Arizona Press.
Billings, S. E. and Kattenhorn, S. A. (2005). The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges. Icarus, 177, 397–412.CrossRefGoogle Scholar
Bills, B. G. (2005). Free and forced obliquities of the Galilean satellites of Jupiter. Icarus, 175, 233–247.CrossRefGoogle Scholar
Bland, M. T. and Showman, A. P. (2007). The formation of Ganymede's grooved terrain: Numerical modeling of extensional necking instabilities. Icarus, 189, 439–456.CrossRefGoogle Scholar
Bland, M. T., Beyer, R. A., and Showman, A. P. (2007). Unstable extension of Enceladus' lithosphere. Icarus, 192, 92–105.CrossRefGoogle Scholar
Bland, M. T., McKinnon, W. B., and Showman, A. P. (2008a). The formation of Ganymede's grooved terrain: Importance of strain weakening (abs.). Eos Trans. AGU (Fall Meet. Suppl.) P23A–1358.
Bland, M. T., Showman, A. P., and Tobie, G. (2008b). The production of Ganymede's magnetic field. Icarus, 198, 384–399.CrossRefGoogle Scholar
Bruesch, L. S. and Asphaug, E. (2004). Modeling global impact effects on middle-sized icy bodies: Applications to Saturn's moons. Icarus, 168, 457–466.CrossRefGoogle Scholar
Buck, W. R. (1991). Modes of continental lithospheric extension. J. Geophys. Res., 96, 20 161–20 178.CrossRefGoogle Scholar
Buratti, B. J., Goguen, J. D., Gibson, J., and Mosher, J. (1994). Historical photometric evidence for volatile migration on Triton. Icarus, 110, 303–314.CrossRefGoogle Scholar
Burns, J. A. and Matthews, M. S., eds. (1986). Satellites. Tucson, AZ: University of Arizona Press.
Cassen, P., Reynolds, R. T., and Peale, S. J. (1979). Is there liquid water on Europa?Geophys. Res. Lett., 6, 731–734.CrossRefGoogle Scholar
Castillo, J. C., Matson, D. L., Sotin, C., Johnson, T. V., Lunine, J. I., and Thomas, P. C. (2006). A new understanding of the internal evolution of saturnian icy satellites from Cassini observations (abs.). Lunar Planet. Sci. Conf. XXXVII, 2200. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Castillo-Rogez, J., Matson, D., Sotin, C., Johnson, T., Lunine, J., and Thomas, P. (2007). Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 190, 179–202.CrossRefGoogle Scholar
Chapman, C. R. and McKinnon, W. B. (1986). Cratering of planetary satellites. In Satellites, ed. Burns, J. A. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 492–580.Google Scholar
Clark, B. E., Helfenstein, P., Veverka, J., Ockert-Bell, M., Sullivan, R. J., Geissler, P. E., Phillips, C. B., McEwen, A. S., Greeley, R., Neukum, G., Denk, T., and Klaasen, K. (1998). Multispectral terrain analysis of Europa from Galileo images. Icarus, 135, 95–106.CrossRefGoogle Scholar
Collins, G. C. (2006). Global expansion of Ganymede derived from strain measurements in grooved terrain (abs.). Lunar Planet. Sci. Conf. XXXVII, 2077. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Collins, G. C. and Goodman, J. C. (2007). Enceladus' south polar sea. Icarus, 189, 72–82.CrossRefGoogle Scholar
Collins, G. C. and Pappalardo, R. T. (2000). Predicted stress patterns on Pluto and Charon due to their mutual orbital evolution (abs.). Lunar Planet. Sci. Conf. XXXI, 1035. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Collins, G. C. and Schenk, P. (1994). Triton's lineaments: Complex morphology and stress patterns (abs.). Lunar Planet. Sci. Conf. XXV, 277–278. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Collins, G. C., Head, J. W., and Pappalardo, R. T. (1998a). The role of extensional instability in creating Ganymede grooved terrain: Insights from Galileo high-resolution stereo imaging. Geophys. Res. Lett., 25, 233–236.CrossRefGoogle Scholar
Collins, G. C., Head, J. W., and Pappalardo, R. T. (1998b). Geology of the Galileo G7 Nun Sulci target area, Ganymede (abs.). Lunar Planet. Sci. Conf. XXIX, 1755. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Collins, G. C., Pappalardo, R. T., and Head, J. W. (1999). Surface stresses resulting from internal differentiation: Application to Ganymede tectonics (abs.). Lunar Planet. Sci. Conf. XXX, 1695. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Cooper, J. F., Johnson, R. E., Mauk, B. H., Garrett, H. B., and Gehrels, N. (2001). Energetic ion and electron irradiation of the icy Galilean satellites. Icarus, 149, 133–159.CrossRefGoogle Scholar
Copernicus, N. (1543). De Revolutionibus Orbium, Coelestium. Nuremberg: Johannes Petrius.
Crawford, G. D. and Stevenson, D. J. (1988). Gas-driven water volcanism in the resurfacing of Europa. Icarus, 73, 66–79.CrossRefGoogle Scholar
Croft, S. K. and Soderblom, L. A. (1991). Geology of the uranian satellites. In Uranus, ed. Bergstralh, J. T., Miner, E. D. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 561–628.Google Scholar
Croft, S. K., Kargel, J. S., Kirk, R. L., Moore, J. M., Schenk, P. M., and Strom, R. G. (1995). The geology of Triton. In Neptune and Triton, ed. Cruikshank, D. P.. Tucson, AZ: University of Arizona Press, pp. 879–947.Google Scholar
Crown, D. A., Greeley, R., Craddock, R. A., and Schaber, G. G. (1992). Geologic map of Io. U.S. Geol. Surv. Misc. Invest. Ser., Map I-2209.
Cruikshank, D. P., ed. (1995). Neptune and Triton. Tucson, AZ: University of Arizona Press.
Cruikshank, D. P., Schmitt, B., Roush, T. L., Owen, T. C., Quirico, E., Geballe, T. R., Bergh, C., Bartholomew, M. J., Dalle Ore, C. M., Douté, S., and Meier, R. (2000). Water ice on Triton. Icarus, 147, 309–316.CrossRefGoogle Scholar
Chapelle, S., Milsch, H., Castelnau, O., and Duval, P. (1999). Compressive creep of ice containing a liquid intergranular phase: Rate-controlling processes in the dislocation creep regime. Geophys. Res. Lett., 26, 251–254.CrossRefGoogle Scholar
DeRemer, L. C., and Pappalardo, R. T. (2003). Manifestations of strike slip faulting on Ganymede (abs). Lunar Planet. Sci. Conf. XXXIV, 2033. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Dermott, S. F., Malhotra, R., and Murray, C. D. (1988). Dynamics of the uranian and saturnian satellite systems: A chaotic route to melting Miranda?Icarus, 76, 295–334.CrossRefGoogle Scholar
Dobson, D. P., Meredith, P. G., and Boon, S. A. (2002). Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298, 1407–1410.CrossRefGoogle ScholarPubMed
Dombard, A. J. and McKinnon, W. B. (2001). Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, superplastic creep. Icarus, 154, 321–336.CrossRefGoogle Scholar
Dombard, A. J. and McKinnon, W. B. (2006a). Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J. Geophys. Res., 111, E01001.CrossRefGoogle Scholar
Dombard, A. J. and McKinnon, W. B. (2006b). Folding of Europa's icy lithosphere: An analysis of viscous-plastic buckling and subsequent topographic relaxation. J. Struct. Geol., 28, 2259–2269.CrossRefGoogle Scholar
Durham, W. B. and Stern, L. A. (2001). Rheological properties of water ice: Applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci., 29, 295–330.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (1992). Effects of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res., 97, 20 883–20 897.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (1993). Flow of ices in the ammonia-water system. J. Geophys. Res., 98, 17 667–17 682.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (1998). Rheology of planetary ices. In Solar System Ices, ed. Schmitt, B., Bergh, C. and Festou, M.. Amsterdam: Kluwer.Google Scholar
Durham, W. B., Stern, L. A., and Kirby, S. H. (2001). Rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res., 106, 11 031–11 042.CrossRefGoogle Scholar
Durham, W. B., Stern, L. A., Kubo, T., and Kirby, S. H. (2005). Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa. J. Geophys. Res., 110, E12010.CrossRefGoogle Scholar
Duxbury, N. S. and Brown, R. H. (1997). The role of an internal heat source for the eruptive plumes on Triton. Icarus, 125, 83–93.CrossRefGoogle Scholar
Ellsworth, K. and Schubert, G. (1983). Saturn's icy satellites: Thermal and structural models. Icarus, 54, 490–510.CrossRefGoogle Scholar
Fagents, S. A., Greeley, R., Sullivan, R. J., Pappalardo, R. T., and Prockter, L. M. (2000). Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa. Icarus, 144, 54–88.CrossRefGoogle Scholar
Figueredo, P. H. and Greeley, R. (2000). Geologic mapping of the northern leading hemisphere of Europa from Galileo solid-state imaging data. J. Geophys. Res., 105, 22 629–22 646.CrossRefGoogle Scholar
Fink, J. H. and Fletcher, R. C. (1981). A mechanical analysis of extensional instability on Ganymede (abs.). NASA TM-84211, 51–53.Google Scholar
Finnerty, A. A., Ransford, G. A., Pieri, D. C., and Collerson, K. D. (1981). Is Europa surface cracking due to thermal evolution?Nature, 289, 24–27.CrossRefGoogle Scholar
Friedson, A. J. and Stevenson, D. J. (1983). Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus, 56, 1–14.CrossRefGoogle Scholar
Frost, H. J. and Ashby, M. F. (1982). Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. New York: Pergamon Press.Google Scholar
Gaidos, E. J. and Nimmo, F. (2000). Tectonics and water on Europa. Nature, 405, 637.CrossRefGoogle ScholarPubMed
Galilei, G. (1610). Siderius Nuncius. Venice: Baglioni.CrossRefGoogle Scholar
Gammon, P. H., Kiefte, H., Clouter, M. J., and Denner, W. W. (1983). Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. J. Glaciol., 29, 433–460.CrossRefGoogle Scholar
Gehrels, T. and Matthews, M. S., eds. (1984). Saturn. Tucson, AZ: University of Arizona Press.
Geissler, P. E., Greenberg, R., Hoppa, G., McEwen, A., Tufts, R., Phillips, C., Clark, B., Ockert-Bell, M., Helfenstein, P., Burns, J., Veverka, J., Sullivan, R., Greeley, R., Pappalardo, R. T., Head, J. W., Belton, M. J. S., and Denk, T. (1998a). Evolution of lineaments on Europa: Clues from Galileo multispectral imaging observations. Icarus, 135, 107–126.CrossRefGoogle Scholar
Geissler, P. E., Greenberg, R., Hoppa, G., Helfenstein, P., McEwen, A., Pappalardo, R., Tufts, R., Ockert-Bell, M., Sullivan, R., Greeley, R., Belton, M. J. S., Denk, T., Clark, B. E., Burns, J., and Veverka, J. (1998b). Evidence for non-synchronous rotation of Europa. Nature, 391, 368.CrossRefGoogle ScholarPubMed
Geissler, P., Greenberg, R., Hoppa, G. V., Tufts, B. R., and Milazzo, M. (1999). Rotation of lineaments in Europa's southern hemisphere (abs.). Lunar Planet. Sci. Conf. XXX, 1743. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Giese, B., Oberst, J., Roatsch, T., Neukum, G., Head, J. W., and Pappalardo, R. T. (1998). The local topography of Uruk Sulcus and Galileo Regio obtained from stereo images. Icarus, 135, 303–316.CrossRefGoogle Scholar
Giese, B., Wagner, R., Neukum, G., and Sullivan, R. (1999). Doublet ridge formation on Europa: Evidence from topographic data. Bull. AAS, 31, 62.08.Google Scholar
Giese, B., Wagner, R., Neukum, G., Helfenstein, P., and Thomas, P. C. (2007). Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma. Geophys. Res. Lett., 34, L21203.CrossRefGoogle Scholar
Goldreich, P. (1966). Final spin states of planets and satellites. Astron. J., 71, 1–7.CrossRefGoogle Scholar
Goldreich, P., Murray, N., Longaretti, P. Y., and Banfield, D. (1989). Neptune's story. Science, 245, 500–504.CrossRefGoogle ScholarPubMed
Goldsby, D. L. and Kohlstedt, D. L. (2001). Superplastic deformation of ice: Experimental observations. J. Geophys. Res., 106, 11 017–11 030.CrossRefGoogle Scholar
Golombek, M. P. and Banerdt, W. B. (1986). Early thermal profiles and lithospheric strength of Ganymede from extensional tectonic features. Icarus, 68, 252–265.CrossRefGoogle Scholar
Golombek, M. P. and Banerdt, W. B. (1990). Constraints on the subsurface structure of Europa. Icarus, 83, 441–452.CrossRefGoogle Scholar
Greeley, R., Sullivan, R., Coon, M. D., Geissler, P. E., Tufts, B. R., Head, J. W., Pappalardo, R. T., and Moore, J. M. (1998). Terrestrial sea ice morphology: Considerations for Europa. Icarus, 135, 25–40.CrossRefGoogle Scholar
Greeley, R., Collins, G. C., Spaun, N. A., Sullivan, R. J., Moore, J. M., Senske, D. A., Tufts, B. R., Johnson, T. V., Belton, M. J. S., and Tanaka, K. L. (2000). Geologic mapping of Europa. J. Geophys. Res., 105, 22 559–22 578.CrossRefGoogle Scholar
Greeley, R., Chyba, C. F., Head, J. W., McCord, T. B., McKinnon, W. B., Pappalardo, R. T., and Figueredo, P. H. (2004). Geology of Europa. In Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. New York: Cambridge University Press, pp. 363–396.Google Scholar
Greenberg, R. (2004). The evil twin of Agenol: Tectonic convergence on Europa. Icarus, 167, 313–319.CrossRefGoogle Scholar
Greenberg, R. and Weidenschilling, S. J. (1984). How fast do Galilean satellites spin?Icarus, 58, 186–196.CrossRefGoogle Scholar
Greenberg, R., Croft, S. K., Janes, D. M., Kargel, J. S., Lebofsky, L. A., Lunine, J. I., Marcialis, R. L., Melosh, H. J., Ojakangas, G. W., and Strom, R. G. (1991). Miranda. In Uranus, ed. Bergstralh, J. T., Miner, E. D. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 561–628.Google Scholar
Greenberg, R., Geissler, P., Hoppa, G., Tufts, B. R., Durda, D. D., Pappalardo, R., Head, J. W., Greeley, R., Sullivan, R., and Carr, M. H. (1998). Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features. Icarus, 135, 64–78.CrossRefGoogle Scholar
Greenberg, R., Geissler, P., Hoppa, G., and Tufts, B. R. (2002). Tidal-tectonic processes and their implications for the character of Europa's icy crust. Rev. Geophys., 40, 1004.CrossRefGoogle Scholar
Groenleer, J. M. and Kattenhorn, S. A. (2008). Cycloid crack sequences on Europa: Relationship to stress history and constraints on growth mechanics based on cusp angles. Icarus, 193, 158–181.CrossRefGoogle Scholar
Han, L. J. and Showman, A. P. (2005). Thermo-compositional convection in Europa's icy shell with salinity. Geophys. Res. Lett., 32, L20201.CrossRefGoogle Scholar
Han, L. J. and Showman, A. P. (2008). Implications of shear heating and fracture zones for ridge formation on Europa. Geophys. Res. Lett., 35, L03202.CrossRefGoogle Scholar
Head, J. W. (2000). RRR triple junctions on Europa: Clues to the nature of Europan crustal spreading processes (abs.). Lunar Planet. Sci. Conf. XXXI, 1286. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Head, J. W., Pappalardo, R. T., and Sullivan, R. (1999). Europa: Morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model. J. Geophys. Res., 104, 24 223–24 236.CrossRefGoogle Scholar
Head, J. W., Pappalardo, R., Collins, G., Belton, M. J. S., Giese, B., Wagner, R., Breneman, H., Spaun, N., Nixon, B., Neukum, G., and Moore, J. (2002). Evidence for Europa-like tectonic resurfacing styles on Ganymede. Geophys. Res. Lett., 29, doi:10.1029/2002GL015961.CrossRefGoogle Scholar
Helfenstein, P., and Parmentier, E. M. (1980). Fractures on Europa: Possible response of an ice crust to tidal deformation. Proc. Lunar Planet. Sci. Conf. 11, 1987–1998.Google Scholar
Helfenstein, P. and Parmentier, E. M. (1983). Patterns of fracture and tidal stresses on Europa. Icarus, 53, 415–430.CrossRefGoogle Scholar
Helfenstein, P. and Parmentier, E. M. (1985). Patterns of fracture and tidal stresses due to nonsynchronous rotation: Implications for fracturing on Europa. Icarus, 61, 175–184.CrossRefGoogle Scholar
Helfenstein, P., Currier, N., Clark, B. E., Veverka, J., Bell, M., Sullivan, R., Klemaszewski, J., Greeley, R., Pappalardo, R. T., Head, J. W., Jones, T., Klaasen, K., Magee, K., Geissler, P., Greenberg, R., McEwen, A., Phillips, C., Colvin, T., Davies, M., Denk, T., Neukum, G., and Belton, M. J. S. (1998). Galileo observations of Europa's opposition effect. Icarus, 135, 41–63.CrossRefGoogle Scholar
Helfenstein, P., Thomas, P. C., Veverka, J., Rathbun, J., Perry, J., Turtle, E., Denk, T., Neukum, G., Roatsch, T., Wagner, R., Giese, B., Squyres, S., Burns, J., McEwen, A., Porco, C., and Johnson, T. V. (2006a). Patterns of fracture and tectonic convergence near the south pole of Enceladus (abs.). Lunar Planet. Sci. Conf. XXXVII, 2182. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Helfenstein, P., Thomas, P. C., Veverka, J., Porco, C., Giese, B., Wagner, R., Roatsch, T., Denk, T., Neukum, G., and Turtle, E. (2006b). Surface geology and tectonism on Enceladus (abs.). Eos Trans. AGU, P22B-02.Google Scholar
Herrick, D. L. and Stevenson, D. J. (1990). Extensional and compressional instabilities in icy satellite lithospheres. Icarus, 85, 191–204.CrossRefGoogle Scholar
Hillier, J. and Squyres, S. W. (1991). Thermal stress tectonics on the satellites of Saturn and Uranus. J. Geophys. Res., 96, 15 665–15 674.CrossRefGoogle Scholar
Hoppa, G. V., Tufts, B. R., Greenberg, R., and Geissler, P. (1999a). Strike-slip faults on Europa: Global shear patterns driven by tidal stress. Icarus, 141, 287–298.CrossRefGoogle Scholar
Hoppa, G. V., Tufts, B. R., Greenberg, R., and Geissler, P. E. (1999b). Formation of cycloidal features on Europa. Science, 285, 1899–1902.CrossRefGoogle ScholarPubMed
Hoppa, G., Greenberg, R., Geissler, P., Tufts, B. R., Plassmann, J., and Durda, D. D. (1999c). Rotation of Europa: Constraints from terminator and limb positions. Icarus, 137, 341–347.CrossRefGoogle Scholar
Hoppa, G. V., Tufts, B. R., Greenberg, R., and Geissler, P. E. (2000). Europa's sub-Jovian hemisphere from Galileo I25: Tectonic and chaotic surface features (abs.). Lunar Planet. Sci. Conf. XXXI, 1380. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Hoppa, G. V., Tufts, B. R., Greenberg, R., Hurford, T. A., O'Brien, D. P., and Geissler, P. E. (2001). Europa's rate of rotation derived from the tectonic sequence in the Astypalaea region. Icarus, 153, 208–213.CrossRefGoogle Scholar
Hurford, T. A., Beyer, R. A., Schmidt, B., Preblich, B., Sarid, A. R., and Greenberg, R. (2005). Flexure of Europa's lithosphere due to ridge-loading. Icarus, 177, 380–396.CrossRefGoogle Scholar
Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R., and Bills, B. G. (2007). Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature, 447, 292–294.CrossRefGoogle ScholarPubMed
Hussmann, H., Sohl, F., and Spohn, T. (2006). Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus, 185, 258–273.CrossRefGoogle Scholar
Ip, W. H. (2006). On a ring of the equatorial ridge of Iapetus. Geophys. Res. Lett., 33, 16 203.CrossRefGoogle Scholar
Ip, W. H., Kopp, A., Williams, D. J., McEntire, R. W., and Mauk, B. H. (2000). Magnetospheric ion sputtering: The case of Europa and its surface age. Adv. Space Res., 26, 1649–1652.CrossRefGoogle Scholar
Jackson, J. (1989). Normal faulting in the upper continental crust: Observations from regions of active extension. J. Struct. Geol., 11, 15–36.CrossRefGoogle Scholar
Jaeger, W., Turtle, E., Keszthelyi, L., Radebaugh, J., McEwen, A., and Pappalardo, R. (2003). Orogenic tectonism on Io. J. Geophys. Res., 108, doi:10.1029/2002JE001946.CrossRefGoogle Scholar
Janes, D. M. and Melosh, H. J. (1988). Sinker tectonics: An approach to the surface of Miranda. J. Geophys. Res., 93, 3127–3143.CrossRefGoogle Scholar
Janes, D. M. and Melosh, H. J. (1990). Tectonics of planetary loading: A general model and results. J. Geophys. Res., 95, 21 345–21 355.CrossRefGoogle Scholar
Jankowski, D. G. and Squyres, S. W. (1988). Solid-state ice volcanism on the satellites of Uranus. Science, 241, 1322–1325.CrossRefGoogle ScholarPubMed
Jenyon, M. (1986). Salt Tectonics. New York: Elsevier.Google Scholar
Johnson, T. V. and Soderblom, L. A. (1982). Volcanic eruptions on Io: Implications for surface evolution and mass loss. In Satellites of Jupiter, ed. Morrison, D.. Tucson, AZ: University of Arizona Press, pp. 634–646.Google Scholar
Kadel, S. D., Fagents, S. A., and Greeley, R. (1998). Trough-bounding ridge pairs on Europa: Considerations for an endogenic model of formation (abs.). Lunar Planet. Sci. Conf. XXIX, 1078. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Kargel, J. S. and Pozio, S. (1996). The volcanic and tectonic history of Enceladus. Icarus, 119, 385–404.CrossRefGoogle Scholar
Kattenhorn, S. A. (2002). Nonsynchronous rotation evidence and fracture history in the Bright Plains region, Europa. Icarus, 157, 490–506.CrossRefGoogle Scholar
Kattenhorn, S. A. (2004). Strike-slip fault evolution on Europa: Evidence from tailcrack geometries. Icarus, 172, 582–602.CrossRefGoogle Scholar
Kattenhorn, S. A. and Marshall, S. T. (2006). Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: Implications for fault mechanics. J. Struct. Geol., 28, 2204–2221.CrossRefGoogle Scholar
Kirchoff, M. R. (2006). Mountain building on Io: An unsteady relationship between volcanism and tectonism. Unpublished Ph.D. thesis, Washington University, St. Louis, MO.Google Scholar
Kirchoff, M. R. and McKinnon, W. B. (2009). Formation of mountains on Io: Variable volcanism and thermal stresses. Icarus, 201, 598–614.CrossRefGoogle Scholar
Kirk, R. L. and Stevenson, D. J. (1987). Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus, 69, 91–134.CrossRefGoogle Scholar
Kirk, R. L., Soderblom, L. A., Brown, R. H., Keiffer, S. W., and Kargel, J. S. (1995). Triton's plumes: Discovery, characteristics, and models. In Neptune and Triton, ed. Cruikshank, D. P.. Tucson, AZ: University of Arizona Press, pp. 949–989.Google Scholar
Kivelson, M. G., Khurana, K. K., and Volwerk, M. (2002). The permanent and inductive magnetic moments of Ganymede. Icarus, 157, 507–522.CrossRefGoogle Scholar
Lee, S., Pappalardo, R. T., and Makris, N. C. (2005). Mechanics of tidally driven fractures in Europa's ice shell. Icarus, 177, 367–379.CrossRefGoogle Scholar
Leith, A. C. and McKinnon, W. B. (1996). Is there evidence for polar wander on Europa?Icarus, 120, 387–398.CrossRefGoogle Scholar
Levison, H. F., Duncan, M. J., Zahnle, K., Holman, M., and Dones, L. (2000). Planetary impact rates from ecliptic comets. Icarus, 143, 415–420.CrossRefGoogle Scholar
Lorenz, R. D., and 39 others (2006). The sand seas of Titan: Cassini radar observations of longitudinal dunes. Science, 312, 724–727.CrossRefGoogle ScholarPubMed
Lucchitta, B. K. (1980). Grooved terrain on Ganymede. Icarus, 44, 481–501.CrossRefGoogle Scholar
Lucchitta, B. K. and Soderblom, L. A. (1982). Geology of Europa. In Satellites of Jupiter, ed. Morrison, D.. Tucson, AZ: University of Arizona Press, pp. 521–555.Google Scholar
Macdonald, K. C. (1982). Mid-ocean ridges: Fine scale tectonic, volcanic, and hydrothermal processes within the plate boundary zone. Annu. Rev. Earth Planet. Sci., 10, 155.CrossRefGoogle Scholar
Mackenzie, R. A., Iess, L., Tortora, P., and Rappaport, N. J. (2008). A non-hydrostatic Rhea. Geophys. Res. Lett., 35, L05204.CrossRefGoogle Scholar
Maeno, N. and Arakawa, M. (2004). Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys., 95, 134–139.CrossRefGoogle Scholar
Malin, M. C. and Pieri, D. C. (1986). Europa. In Satellites, ed. Burns, J. A. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 689–717.Google Scholar
Manga, M. and Sinton, A. (2004). Formation of bands and ridges on Europa by cyclic deformation: Insights from analogue wax experiments. J. Geophys. Res., 109, E09001.CrossRefGoogle Scholar
Manga, M. and Wang, C. Y. (2007). Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett., 34, L07202.CrossRefGoogle Scholar
Marcialis, R. and Greenberg, R. (1987). Warming of Miranda during chaotic rotation. Nature, 328, 227–229.CrossRefGoogle Scholar
Matsuyama, I. and Nimmo, F. (2007). Rotational stability of tidally deformed planetary bodies. J. Geophys. Res., 112, E11003.CrossRefGoogle Scholar
Matsuyama, I. and Nimmo, F. (2008). Tectonic patterns on reoriented and despun planetary bodies. Icarus, 195, 459–473.CrossRefGoogle Scholar
McCarthy, C., Goldsby, D. L., and Cooper, R. F. (2007). Transient and steady-state creep responses of ice-I/magnesium sulfate hydrate eutectic aggregates (abs.). Lunar Planet. Sci. Conf. XXXVIII, 2429. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
McEwen, A. S. (1986). Tidal reorientation and the fracturing of Jupiter's moon Europa. Nature, 321, 49–51.CrossRefGoogle Scholar
McEwen, A. S., Keszthelyi, L. P., Lopes, R., Schenk, P. M., and Spencer, J. R. (2004). The lithosphere and surface of Io. In Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. E. and McKinnon, W. B. New York: Cambridge University Press, pp. 307–328.Google Scholar
McKenzie, D., McKenzie, J. M., and Saunders, R. S. (1992). Dike emplacement on Venus and on Earth. J. Geophys. Res., 97, 15 977–15 990.CrossRefGoogle Scholar
McKinnon, W. B. (1982). Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede. Proc. Lunar Planet. Sci. 12, 1585–1597.Google Scholar
McKinnon, W. B. (1988). Odd tectonics of a rebuilt moon. Nature, 333, 701.CrossRefGoogle Scholar
McKinnon, W. B. (1997). Mystery of Callisto: Is it undifferentiated?Icarus, 130, 540–543.CrossRefGoogle Scholar
McKinnon, W. B. (1998). Geodynamics of icy satellites. In Solar System Ices, ed. Schmitt, B., Bergh, C. and Festou, M.. Amsterdam: Kluwer.Google Scholar
McKinnon, W. B. (1999). Convective instability in Europa's floating ice shell. Geophys. Res. Lett., 26, 951–954.CrossRefGoogle Scholar
McKinnon, W. B. (2006). On convection in ice I shells of outer solar system bodies, with detailed application to Callisto. Icarus, 183, 435–450.CrossRefGoogle Scholar
McKinnon, W. B. and Leith, A. C. (1995). Gas drag and the orbital evolution of a captured Triton. Icarus, 118, 392–413.CrossRefGoogle Scholar
McKinnon, W. B. and Melosh, H. J. (1980). Evolution of planetary lithospheres: Evidence from multiringed structures on Ganymede and Callisto. Icarus, 44, 454–471.CrossRefGoogle Scholar
McKinnon, W. B., Lunine, J. I., and Banfield, D. (1995). Origin and evolution of Triton. In Neptune and Triton, ed. Cruikshank, D. P.. Tucson, AZ: University of Arizona Press, pp. 807–877.Google Scholar
McKinnon, W. B., Schenk, P. M., and Dombard, A. J. (2001). Chaos on Io: A model for formation of mountain blocks by crustal heating, melting, and tilting. Geology, 29, 103.2.0.CO;2>CrossRefGoogle Scholar
McNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. J. Geophys. Res., 89, 11180–11194.CrossRefGoogle Scholar
Melosh, H. J. (1975). Large impact craters and the Moon's orientation. Earth Planet. Sci. Lett., 26, 353–360.CrossRefGoogle Scholar
Melosh, H. J. (1977). Global tectonics of a despun planet. Icarus, 31, 221–243.CrossRefGoogle Scholar
Melosh, H. J. (1980a). Tectonic patterns on a reoriented planet: Mars. Icarus, 44, 745–751.CrossRefGoogle Scholar
Melosh, H. J. (1980b). Tectonic patterns on a tidally distorted planet. Icarus, 43, 334–337.CrossRefGoogle Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Melosh, H. J. and Turtle, E. P. (2004). Ridges on Europa: Origin by incremental ice-wedging (abs.). Lunar Planet. Sci. Conf. XXXV, 2029. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Michaud, R. L., Pappalardo, R. T., and Collins, G. C. (2008). Pit chains on Enceladus: A discussion of their origin (abs.). Lunar Planet. Sci. Conf. XXXIX, 1678. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Milazzo, M. P., Geissler, P. E., Greenberg, R., Keszthelyi, L. P., McEwen, A. S., Radebaugh, J., and Turtle, E. P. (2001). Non-synchronous rotation of Io?Workshop on Jupiter: Planet, Satellites, and Magnetosphere, 75–76.Google Scholar
Miller, D. J., Barnash, A. N., Bray, V. J., Turtle, E. P., Helfenstein, P., Squyres, S. W., and Rathbun, J. A. (2007). Interactions between impact craters and tectonic features on Enceladus and Dione. Workshop on Ices, Oceans, and Fire, 6007.Google Scholar
Mohit, P. S., Greenhagen, B. T., and McKinnon, W. B. (2004). Polar wander on Ganymede. Bull. Am. Astron. Soc., 36, 1084–1085.Google Scholar
Moons, M. and Henrard, J. (1994). Surfaces of section in the Miranda-Umbriel 3:1 inclination problem. Celest. Mech. Dyn. Astron., 59, 129–148.CrossRefGoogle Scholar
Moore, J. M. and Ahern, J. L. (1983). The geology of Tethys. J. Geophys. Res., 88, A577-A584.CrossRefGoogle Scholar
Moore, J. M. and Schenk, P. M. (2007). Topography of endogenic features on Saturnian mid-sized satellites (abs.). Lunar Planet. Sci. Conf. XXXVIII, 2136. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Moore, J. M., Horner, V. M., and Greeley, R. (1985). The geomorphology of Rhea: Implications for geologic history and surface processes. J. Geophys. Res., 90, C785-C796.CrossRefGoogle Scholar
Moore, J., McEwen, A., Albin, E., and Greeley, R. (1986). Topographic evidence for shield volcanism on Io. Icarus, 67, 181–183.CrossRefGoogle Scholar
Moore, J. M., Schenk, P. M., Bruesch, L. S., Asphaug, E. and McKinnon, W. B. (2004a). Large impact features on middle-sized icy satellites. Icarus, 171, 421–443.CrossRefGoogle Scholar
Moore, J. M., Chapman, C. R., Bierhaus, E. B., Greeley, R., Chuang, F. C., Klemaszewski, J., Clark, R. N., Dalton, J. B., Hibbitts, C. A., Schenk, P. M., Spencer, J. R., and Wagner, R. (2004b). Callisto. In Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. New York: Cambridge University Press, pp. 397–426.Google Scholar
Moore, W. B. (2006). Thermal equilibrium in Europa's ice shell. Icarus, 180, 141–146.CrossRefGoogle Scholar
Moore, W. B. and Schubert, G. (2003). The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus, 166, 223–226.CrossRefGoogle Scholar
Morrison, D., ed. (1982). Satellites of Jupiter. Tucson, AZ: University of Arizona Press.Google Scholar
Mueller, S. and McKinnon, W. B. (1988). Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution. Icarus, 76, 437–464.CrossRefGoogle Scholar
Murchie, S. L. and Head, J. W. (1986). Global reorientation and its effect on tectonic patterns on Ganymede. Geophys. Res. Lett., 13, 345–348.CrossRefGoogle Scholar
Murchie, S. L. and Head, J. W. (1988). Possible breakup of dark terrain on Ganymede by large-scale shear faulting. J. Geophys. Res., 93, 8795–8824.CrossRefGoogle Scholar
Murchie, S. L., Head, J. W., Helfenstein, P., and Plescia, J. B. (1986). Terrain types and local-scale stratigraphy of grooved terrain on Ganymede. J. Geophys. Res., 91, E222-E238.CrossRefGoogle Scholar
Murray, C. D. and Dermott, S. F. (1999). Solar System Dynamics. New York: Cambridge University Press.Google Scholar
Nimmo, F. (2004a). What is the Young's modulus of ice? (abs.). Workshop on Europa's Icy Shell, 7005.Google Scholar
Nimmo, F. (2004b). Stresses generated in cooling viscoelastic ice shells: Application to Europa. J. Geophys. Res., 109, E12001.CrossRefGoogle Scholar
Nimmo, F. (2004c). Non-Newtonian topographic relaxation on Europa. Icarus, 168, 205–208.CrossRefGoogle Scholar
Nimmo, F. (2004d). Dynamics of rifting and modes of extension on icy satellites. J. Geophys. Res., 109, E01003.CrossRefGoogle Scholar
Nimmo, F. and Gaidos, E. (2002). Strike-slip motion and double ridge formation on Europa. J. Geophys. Res., 107, doi:10.1029/2000JE001476.CrossRefGoogle Scholar
Nimmo, F. and Manga, M. (2002). Causes, characteristics, and consequences of convective diapirism on Europa. Geophys. Res. Lett., 29, doi:10.1029/2002GL015754.CrossRefGoogle Scholar
Nimmo, F. and Matsuyama, I. (2007). Reorientation of icy satellites by impact basins. Geophys. Res. Lett., 34, L19203.CrossRefGoogle Scholar
Nimmo, F. and Pappalardo, R. T. (2004). Furrow flexure and ancient heat flux on Ganymede. Geophys. Res. Lett., 31, L19701.CrossRefGoogle Scholar
Nimmo, F. and Pappalardo, R. T. (2006). Diapir-induced reorientation of Saturn's moon Enceladus. Nature, 441, 614–616.CrossRefGoogle ScholarPubMed
Nimmo, F. and Schenk, P. (2006). Normal faulting on Europa: Implications for ice shell properties. J. Struct. Geol., 28, 2194–2203.CrossRefGoogle Scholar
Nimmo, F., Pappalardo, R. T., and Giese, B. (2002). Effective elastic thickness and heat flux estimates on Ganymede. Geophys. Res. Lett., 29, doi:10.1029/2001GL013976.CrossRefGoogle Scholar
Nimmo, F., Pappalardo, R. T., and Giese, B. (2003a). On the origins of band topography, Europa. Icarus, 166, 21–32.CrossRefGoogle Scholar
Nimmo, F., Giese, B., and Pappalardo, R. T. (2003b). Estimates of Europa's ice shell thickness from elastically-supported topography. Geophys. Res. Lett., 30, doi:10.1029/2002GL016660.CrossRefGoogle Scholar
Nimmo, F., Thomas, P. C., Pappalardo, R. T., and Moore, W. B. (2007a). The global shape of Europa: Constraints on lateral shell thickness variations. Icarus, 191, 183–192.CrossRefGoogle Scholar
Nimmo, F., Spencer, J. R., Pappalardo, R. T., and Mullen, M. E. (2007b). Shear heating as the origin of the plumes and heat flux on Enceladus. Nature, 447, 289–291.CrossRefGoogle ScholarPubMed
Nur, A. (1982). The origin of tensile fracture lineaments. J. Struct. Geol., 4, 31–40.CrossRefGoogle Scholar
Nyffenegger, P. A. and Consolmagno, G. J. (1988). Tectonic episodes on Ariel: Evidence for an ancient thin crust (abs.). Lunar Planet. Sci. Conf. XIX, 873. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Ojakangas, G. W. and Stevenson, D. J. (1989a). Thermal state of an ice shell on Europa. Icarus, 81, 220–241.CrossRefGoogle Scholar
Ojakangas, G. W. and Stevenson, D. J. (1989b). Polar wander of an ice shell on Europa. Icarus, 81, 242–270.CrossRefGoogle Scholar
O'Reilly, T. and Davies, G. (1981). Magma transport of heat on Io: A mechanism allowing a thick lithosphere. Geophys. Res. Lett., 8, 313–316.CrossRefGoogle Scholar
Palguta, J., Anderson, J. D., Schubert, G., and Moore, W. B. (2006). Mass anomalies on Ganymede. Icarus, 180, 428–441.CrossRefGoogle Scholar
Pappalardo, R. T. (1994). The origin and evolution of ridge and trough terrain and the geological history of Miranda. Unpublished Ph.D. thesis, Arizona State University, Tempe, AZ.Google Scholar
Pappalardo, R. T. and Barr, A. C. (2004). The origin of domes on Europa: The role of thermally induced compositional diapirism. Geophys. Res. Lett., 31, L01701.CrossRefGoogle Scholar
Pappalardo, R. T. and Collins, G. C. (2005). Strained craters on Ganymede. J. Struct. Geol., 27, 827–838.CrossRefGoogle Scholar
Pappalardo, R. T. and Coon, M. D. (1996). A sea ice analogue for the surface of Europa (abs.). Lunar Planet. Sci. Conf. XXVII, 997–998. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Pappalardo, R. T. and Sullivan, R. J. (1996). Evidence for separation across a gray band on Europa. Icarus, 123, 557–567.CrossRefGoogle Scholar
Pappalardo, R. T., Reynolds, S. J., and Greeley, R. (1997). Extensional tilt blocks on Miranda: Evidence for an upwelling origin of Arden Corona. J. Geophys. Res., 102, 13 369–13 379.CrossRefGoogle Scholar
Pappalardo, R. T., Head, J. W., Greeley, R., Sullivan, R. J., Pilcher, C., Schubert, G., Moore, W. B., Carr, M. H., Moore, J. M., Belton, M. J. S., and Goldsby, D. L. (1998a). Geological evidence for solid-state convection in Europa's ice shell. Nature, 391, 365–368.CrossRefGoogle ScholarPubMed
Pappalardo, R. T., Head, J. W., Collins, G. C., Kirk, R. L., Neukum, G., Oberst, J., Giese, B., Greeley, R., Chapman, C. R., Helfenstein, P., Moore, J. M., McEwen, A., Tufts, B. R., Senske, D. A., Breneman, H. H., and Klaasen, K. (1998b). Grooved terrain on Ganymede: First results from Galileo high-resolution imaging. Icarus, 135, 276–302.CrossRefGoogle Scholar
Pappalardo, R. T., and 31 others (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., 104, 24 015–24 056.CrossRefGoogle Scholar
Pappalardo, R. T., Collins, G. C., Head, J. W., Helfenstein, P., McCord, T. B., Moore, J. M., Prockter, L. M., Schenk, P. M., and Spencer, J. R. (2004). Geology of Ganymede. In Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. New York: Cambridge University Press, pp. 363–396.Google Scholar
Passey, Q. R. (1983). Viscosity of the lithosphere of Enceladus. Icarus, 53, 105–120.CrossRefGoogle Scholar
Passey, Q. R. and Shoemaker, E. M. (1982). Craters and basins on Ganymede and Callisto: Morphological indicators of crustal evolution. In Satellites of Jupiter, ed. Morrison, D.. Tucson, AZ: University of Arizona Press, pp. 379–434.Google Scholar
Patel, J. G., Pappalardo, R. T., Prockter, L. M., Collins, G. C., and Head, J. W. (1999a). Morphology of ridge and trough terrain on Europa: Fourier analysis and comparison to Ganymede (abs.). Eos Trans. AGU, P42A-12.Google Scholar
Patel, J. G., Pappalardo, R. T., Head, J. W., Collins, G. C., Hiesinger, H., and Sun, J. (1999b). Topographic wavelengths of Ganymede groove lanes from Fourier analysis of Galileo images. J. Geophys. Res., 104, 24 057–24 074.CrossRefGoogle Scholar
Patterson, G. W. and Head, J. W. (2003). Crustal spreading on Europa: Inferring tectonic history from triple junction analysis (abs.). Lunar Planet. Sci. Conf. XXXIV, 1262. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Patterson, G. W., Head, J. W., and Pappalardo, R. T. (2006). Plate motion on Europa and nonrigid behavior of the icy lithosphere: The Castalia Macula Region. J. Struct. Geol., 28, 2237–2258.CrossRefGoogle Scholar
Peale, S. J. (1977). Rotation histories of the natural satellites. In Planetary Satellites, ed. Burns, J. A. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 87–111.Google Scholar
Peale, S. J. (1999). Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys., 37, 533–602.CrossRefGoogle Scholar
Peale, S. J. (2003). Tidally induced volcanism. Celest. Mech. Dyn. Astron., 87, 129–155.CrossRefGoogle Scholar
Peale, S., Cassen, P., and Reynolds, R. (1979). Melting of Io by tidal dissipation. Science, 203, 892–894.CrossRefGoogle ScholarPubMed
Person, M. J., Elliot, J. L., Gulbis, A. A. S., Pasachoff, J. M., Babcock, B. A., Souza, S. P., and Gangestad, J. (2006). Charon's radius and density from the combined data set of the 2005 July 11 occultation. Astron. J., 132, 1575–1580.CrossRefGoogle Scholar
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. Oxford: Oxford University Press.Google Scholar
Phillips, C. B., McEwen, A. S., Hoppa, G. V., Fagents, S. A., Greeley, R., Klemaszewski, J. E., Pappalardo, R. T., Klaasen, K. P., and Breneman, H. H. (2000). The search for current geologic activity on Europa. J. Geophys. Res., 105, 22 579–22 598.CrossRefGoogle Scholar
Pieri, D. C. (1981). Lineament and polygon patterns on Europa. Nature, 289, 17–21.CrossRefGoogle Scholar
Plescia, J. B. (1983). The geology of Dione. Icarus, 56, 255–277.CrossRefGoogle Scholar
Plescia, J. B. (1987). Geological terrains and crater frequencies on Ariel. Nature, 327, 201–204.CrossRefGoogle Scholar
Plescia, J. B. (1988). Cratering history of Miranda: Implications for geologic processes. Icarus, 73, 442–461.CrossRefGoogle Scholar
Pollack, J. B. and Consolmagno, G. (1984). Origin and evolution of the Saturn system. In Saturn, ed. Gehrels, T. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 811–866.Google Scholar
Porco, C. C., and 35 others (2005a). Imaging of Titan from the Cassini spacecraft. Nature, 434, 159–168.CrossRefGoogle ScholarPubMed
Porco, C. C., and 34 others (2005b). Cassini imaging science: Initial results on Phoebe and Iapetus. Science, 307, 1237–1242.CrossRefGoogle ScholarPubMed
Porco, C. C., and 24 others (2006). Cassini observes the active south pole of Enceladus. Science, 311, 1393–1401.CrossRefGoogle ScholarPubMed
Prockter, L. M. and Pappalardo, R. T. (2000). Folds on Europa: Implications for crustal cycling and accommodation of extension. Science, 289, 941–944.CrossRefGoogle ScholarPubMed
Prockter, L. M., Head, J. W., Pappalardo, R. T., Senske, D. A., Neukum, G., Wagner, R., Wolf, U., Oberst, J. O., Giese, B., Moore, J. M., Chapman, C. R., Helfenstein, P., Greeley, R., Breneman, H. H., and Belton, M. J. S. (1998). Dark terrain on Ganymede: Geological mapping and interpretation of Galileo Regio at high resolution. Icarus, 135, 317–344.CrossRefGoogle Scholar
Prockter, L. M., Pappalardo, R. T., and Head, J. W. (2000a). Strike-slip duplexing on Jupiter's icy moon Europa. J. Geophys. Res., 105, 9483–9488.CrossRefGoogle Scholar
Prockter, L. M., Figueredo, P. H., Pappalardo, R. T., Head, J. W., and Collins, G. C. (2000b). Geology and mapping of dark terrain on Ganymede and implications for grooved terrain formation. J. Geophys. Res., 105, 22 519–22 540.CrossRefGoogle Scholar
Prockter, L. M., Head, J. W., Pappalardo, R. T., Sullivan, R. L., Clifton, A. E., Giese, B., Wagner, R., and Neukum, G. (2002). Morphology of Europan bands at high resolution: A mid-ocean ridge-type rift mechanism. J. Geophys. Res., 107, doi:10.1029/2000JE001458.CrossRefGoogle Scholar
Prockter, L. M., Nimmo, F., and Pappalardo, R. T. (2005). A shear heating origin for ridges on Triton. Geophys. Res. Lett., 32, L14202.CrossRefGoogle Scholar
Quirico, E., Douté, S., Schmitt, B., Bergh, C., Cruikshank, D. P., Owen, T. C., Geballe, T. R., and Roush, T. L. (1999). Composition, physical state, and distribution of ices at the surface of Triton. Icarus, 139, 159–178.CrossRefGoogle Scholar
Radebaugh, J., Keszthelyi, L., McEwen, A., Turtle, E., Jaeger, W., and Milazzo, M. (2001). Paterae on Io: A new type of volcanic caldera?J. Geophys. Res., 106, 33 005–33 020.CrossRefGoogle Scholar
Radebaugh, J., Lorenz, R. D., Kirk, R. L., Lunine, J. I., Stofan, E. R., Lopes, R. M. C., and Wall, S. D. (2007). Mountains on Titan observed by Cassini radar. Icarus, 192, 77–91.CrossRefGoogle Scholar
Rist, M. A. (1997). High-stress ice fracture and friction. J. Phys. Chem. B, 101, 6263–6266.CrossRefGoogle Scholar
Ross, M. and Schubert, G. (1986). Tidal dissipation in a viscoelastic planet. J. Geophys. Res., 91, D447–D452.CrossRefGoogle Scholar
Ross, M. and Schubert, G. (1989). Viscoelastic models of tidal heating in Enceladus. Icarus, 78, 90–101.CrossRefGoogle Scholar
Ross, M. N. and Schubert, G. (1990). The coupled orbital and thermal evolution of Triton. Geophys. Res. Lett., 17, 1749–1752.CrossRefGoogle Scholar
Rubincam, D. P. (2003). Polar wander on Triton and Pluto due to volatile migration. Icarus, 163, 469–478.CrossRefGoogle Scholar
Ruzicka, A. (1988). The geology of Ariel (abs.). Lunar Planet. Sci. Conf. XIX, 1009. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Sarid, A. R., Greenberg, R., Hoppa, G. V., Hurford, T. A., Tufts, B. R., and Geissler, P. (2002). Polar wander and surface convergence of Europa's ice shell: Evidence from a survey of strike-slip displacement. Icarus, 158, 24–41.CrossRefGoogle Scholar
Sarid, A. R., Greenberg, R., Hoppa, G. V., Geissler, P., and Preblich, B. (2004). Crack azimuths on Europa: Time sequence in the southern leading face. Icarus, 168, 144–157.CrossRefGoogle Scholar
Sarid, A. R., Greenberg, R., Hoppa, G. V., Brown, D. M., and Geissler, P. (2005). Crack azimuths on Europa: The G1 lineament sequence revisited. Icarus, 173, 469–479.CrossRefGoogle Scholar
Schenk, P. M. (1991). Fluid volcanism on Miranda and Ariel: Flow morphology and composition. J. Geophys. Res., 96, 1887–1906.CrossRefGoogle Scholar
Schenk, P. M. (1995). The geology of Callisto. J. Geophys. Res., 100, 19 023–19 040.CrossRefGoogle Scholar
Schenk, P. and Bulmer, M. (1998). Origin of mountains on Io by thrust faulting and large-scale mass movements. Science, 279, 1514–1518.CrossRefGoogle ScholarPubMed
Schenk, P. and Jackson, M. P. A. (1993). Diapirism on Triton: A record of crustal layering and instability. Geology, 21, 299–302.2.3.CO;2>CrossRefGoogle Scholar
Schenk, P. M. and McKinnon, W. B. (1989). Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell. Icarus, 79, 75–100.CrossRefGoogle Scholar
Schenk, P. H. and Moore, J. M. (1995). Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry. J. Geophys. Res., 100, 19 009–19 022.CrossRefGoogle Scholar
Schenk, P. M. and Zahnle, K. (2007). On the negligible age of Triton's surface. Icarus, 192, 135–149.CrossRefGoogle Scholar
Schenk, P. M., Asphaug, E., McKinnon, W. B., Melosh, H. L., and Weissman, P. (1996). Cometary nuclei and tidal disruption: The geologic record of crater chains on Callisto and Ganymede. Icarus, 121, 249–274.CrossRefGoogle Scholar
Schenk, P., Wilson, R., Hargitai, H., McEwen, A., and Thomas, P. (2001a). The mountains of Io: Global and geologic perspectives from Voyager and Galileo. J. Geophys. Res., 106, 33 201–33 222.CrossRefGoogle Scholar
Schenk, P. H., McKinnon, W. B., Gwynn, D., and Moore, J. M. (2001b). Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas. Nature, 410, 57–60.CrossRefGoogle ScholarPubMed
Schenk, P., Wilson, R., and Davies, A. (2004a). Shield volcano topography and the rheology of lava flows on Io. Icarus, 169, 98–110.CrossRefGoogle Scholar
Schenk, P. M., Chapman, C. R., Zahnle, K., and Moore, J. M. (2004b). Ages and interiors: The cratering record of the Galilean satellites. In Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. New York: Cambridge University Press, pp. 427–456.Google Scholar
Schenk, P. M., Matsuyama, I., and Nimmo, F. (2008). True polar wander on Europa from global-scale small-circle depressions. Nature, 453, 368–371.CrossRefGoogle ScholarPubMed
Schmeltz, M., Rignot, E., and MacAyeal, D. (2002). Tidal flexure along ice-sheet margins: Comparisons of INSAR with an elastic-plate model. Annals Glaciol., 34, 202–208.CrossRefGoogle Scholar
Schubert, G., Zhang, K., Kivelson, M. G., and Anderson, J. D. (1996). The magnetic field and internal structure of Ganymede. Nature, 384, 544–545.CrossRefGoogle Scholar
Schubert, G., Anderson, J. D., Spohn, T., and McKinnon, W. B. (2004). Interior composition, structure, and dynamics of the Galilean satellites. In Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. New York: Cambridge University Press, pp. 281–306.Google Scholar
Schubert, G., Anderson, J. D., Travis, B. J., and Palguta, J. (2007). Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus, 188, 345–355.CrossRefGoogle Scholar
Schulson, E. M. (2002). On the origin of a wedge crack within the icy crust of Europa. J. Geophys. Res., 107, doi:10.1029/2001JE001586.CrossRefGoogle Scholar
Schulson, E. M. (2006). The fracture of water ice Ih: A short overview. Meteorit. Planet. Sci., 41, 1497–1508.CrossRefGoogle Scholar
Segatz, M., Spohn, T., Ross, M. N., and Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75, 187–206.CrossRefGoogle Scholar
Shoemaker, E. M., Lucchitta, B. K., Wilhelms, D. E., Plescia, J. B., and Squyres, S. W. (1982). The geology of Ganymede. In Satellites of Jupiter, ed. Morrison, D.. Tucson, AZ: University of Arizona Press, pp. 435–520.Google Scholar
Showman, A. P. and Han, L. J. (2005). Effects of plasticity on convection in an ice shell: Implications for Europa. Icarus, 177, 425–437.CrossRefGoogle Scholar
Showman, A. P., Stevenson, D. J., and Malhotra, R. (1997). Coupled orbital and thermal evolution of Ganymede. Icarus, 129, 367–383.CrossRefGoogle Scholar
Sklar, L. S., Polito, P., Zygielbaum, B., and Collins, G. C. (2008). Abrasion susceptibility of ultra-cold water ice: Preliminary measurements of abrasion rate, tensile strength, and elastic modulus (abs.). Science of Solar System Ices Workshop, 9076.
Smith, B. A., and 21 others (1979). The Jupiter system through the eyes of Voyager 1. Science, 204, 951–972.CrossRefGoogle ScholarPubMed
Smith, B. A., and 26 others (1981). Encounter with Saturn: Voyager 1 imaging science results. Science, 212, 163–191.CrossRefGoogle ScholarPubMed
Smith, B. A., and 28 others (1982). A new look at the Saturn system: The Voyager 2 images. Science, 215, 505–537.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Beebe, R., Bliss, D., Brown, R. H., Collins, S. A., Boyce, J. M., Briggs, G. A., Brahic, A., Cuzzi, J. N., and Morrison, D. (1986). Voyager 2 in the Uranian system: Imaging science results. Science, 233, 43–64.CrossRefGoogle ScholarPubMed
Smith, B. A., Soderblom, L. A., Banfield, D., Barnet, C., Beebe, R. F., Basilevski, A. T., Bollinger, K., Boyce, J. M., Briggs, G. A., and Brahic, A. (1989). Voyager 2 at Neptune: Imaging science results. Science, 246, 1422–1449.CrossRefGoogle ScholarPubMed
Smith-Konter, B., and Pappalardo, R. T. (2008). Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus, 198, 435–451.CrossRefGoogle Scholar
Solomatov, V. S. (1995). Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids, 7, 266–274.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L.-N. (2000). Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105, 21 795–21 818.CrossRefGoogle Scholar
Sotin, C., Head, J. W., and Tobie, G. (2002). Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting. Geophys. Res. Lett., 29, doi:10.1029/2001GL013844.CrossRefGoogle Scholar
Spaun, N. A., Pappalardo, R. T., and Head, J. W. (2003). Evidence for shear failure in forming near-equatorial lineae on Europa. J. Geophys. Res., 108, doi:10.1029/2001JE001499.CrossRefGoogle Scholar
Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B. J., Hendrix, A. R., Spilker, L. J., and Lopes, R. M. C. (2006). Cassini encounters Enceladus: Background and the discovery of a south polar hot spot. Science, 311, 1401–1405.CrossRefGoogle ScholarPubMed
Squyres, S. W. (1980). Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys. Res. Lett., 7, 593–596.CrossRefGoogle Scholar
Squyres, S. W. (1981). The topography of Ganymede's grooved terrain. Icarus, 46, 156–168.CrossRefGoogle Scholar
Squyres, S. W. and Croft, S. K. (1986). The tectonics of icy satellites. In Satellites, ed. Burns, J. A. and Matthews, M. S.. Tucson, AZ: University Arizona Press, pp. 293–341.Google Scholar
Squyres, S. W., Reynolds, R. T., Cassen, P. M., and Peale, S. J. (1983). The evolution of Enceladus. Icarus, 53, 319–331.CrossRefGoogle Scholar
Stempel, M. M. and Pappalardo, R. T. (2002). Lineament orientations through time near Europa's leading point: Implications for stress mechanisms and rotation of the icy shell (abs.). Lunar Planet. Sci. Conf. XXXIII, 1661. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Stempel, M. M., Barr, A. C., and Pappalardo, R. T. (2005). Model constraints on the opening rates of bands on Europa. Icarus, 177, 297–304.CrossRefGoogle Scholar
Stern, S. A. and McKinnon, W. B. (2000). Triton's age and impactor population revisited in the light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity. Astron. J., 119, 945–952.CrossRefGoogle Scholar
Stevenson, D. (1996). Heterogeneous tidal deformation and geysers on Europa (abs.). Europa Ocean Conf., 69–70.Google Scholar
Stevenson, D. J. and Lunine, J. I. (1986). Mobilization of cryogenic ice in outer solar system satellites. Nature, 323, 46–48.CrossRefGoogle Scholar
Stofan, E. R., and 35 others (2006). Mapping of Titan: Results from the first Titan radar passes. Icarus, 185, 443–456.CrossRefGoogle Scholar
Stooke, P. J. (1991). Geology of the inter-corona regions of Miranda (abs.). Lunar Planet. Sci. Conf. XXII, 1341. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Sullivan, R., Greeley, R., Homan, K., Klemaszewski, J., Belton, M. J. S., Carr, M. H., Chapman, C. R., Tufts, B. R., Head, J. W., Pappalardo, R., Moore, J., and Thomas, P. (1998). Episodic plate separation and fracture infill on the surface of Europa. Nature, 391, 371–373.CrossRefGoogle ScholarPubMed
Sullivan, R., Moore, J., and Pappalardo, R. (1999). Mass-wasting and slope evolution on Europa (abs.). Lunar Planet. Sci. Conf. XXX, 1747. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Tackley, P. J. (2001). Convection in Io's asthenosphere: Redistribution of nonuniform tidal heating by mean flows. J. Geophys. Res., 106, 32 971–32 981.CrossRefGoogle Scholar
Tackley, P., Schubert, G., Glatzmaier, G., Schenk, P., Ratcliff, J., Matas, J.-P. (2001). Three-dimensional simulations of mantle convection in Io. Icarus, 149, 73–93.CrossRefGoogle Scholar
Thomas, P. C. (1988). Radii, shapes, and topography of the satellites of Uranus from limb coordinates. Icarus, 73, 427–441.CrossRefGoogle Scholar
Thomas, P. C., Burns, J. A., Helfenstein, P., Squyres, S., Veverka, J., Porco, C., Turtle, E. P., McEwen, A., Denk, T., Giese, B., Roatsch, T., Johnson, T. V., and Jacobson, R. A. (2007). Shapes of saturnian icy satellites and their significance. Icarus, 190, 573–584.CrossRefGoogle Scholar
Tittemore, W. C. and Wisdom, J. (1990). Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities. Icarus, 85, 394–443.CrossRefGoogle Scholar
Tobie, G., Mocquet, A., and Sotin, C. (2005). Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus, 177, 534–549.CrossRefGoogle Scholar
Tobie, G., Cadek, O., and Sotin, C. (2008). Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus, 196, 642–652.CrossRefGoogle Scholar
Tomasko, M. G., and 39 others (2005). Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438, 765–778.CrossRefGoogle ScholarPubMed
Tufts, B. R., Greenberg, R., Hoppa, G., and Geissler, P. (1999). Astypalaea Linea: A large-scale strike-slip fault on Europa. Icarus, 141, 53–64.CrossRefGoogle Scholar
Tufts, B. R., Greenberg, R., Hoppa, G., and Geissler, P. (2000). Lithospheric dilation on Europa. Icarus, 146, 75–97.CrossRefGoogle Scholar
Turcotte, D. L. (1983). Thermal stresses in planetary elastic lithospheres. J. Geophys. Res., 88, A585-A587.CrossRefGoogle Scholar
Turcotte, D. L. and Schubert, G. (2002). Geodynamics. New York: Cambridge University Press.CrossRefGoogle Scholar
Turcotte, D. L., Willemann, R. J., Haxby, W. F., and Norberry, J. (1981). Role of membrane stresses in the support of planetary topography. J. Geophys. Res., 86, 3951–3959.CrossRefGoogle Scholar
Turtle, E., Jaeger, W., Keszthelyi, L., McEwen, A., Milazzo, M., Moore, J., Phillips, C., Radebaugh, J., Simonelli, D., Chuang, F., and Peter, S. (2001). Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models. J. Geophys. Res., 106, 33 175–33 200.CrossRefGoogle Scholar
Vaughan, D. G. (1995). Tidal flexure at ice shelf margins. J. Geophys. Res., 100, 6213–6224.CrossRefGoogle Scholar
Wagner, R. J., Neukum, G., Giese, B., Roatsch, T., Wolf, U., and Denk, T. (2006). Geology, ages and topography of Saturn's satellite Dione observed by the Cassini ISS camera (abs.). Lunar Planet. Sci. Conf. XXXVII, 1805. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Wagner, R. J., Neukum, G., Giese, B., Roatsch, T., and Wolf, U. (2007). The global geology of Rhea: Preliminary implications from the Cassini ISS data (abs.). Lunar Planet. Sci. Conf. XXXVIII, 1958. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Wahr, J., Selvans, Z. A., Mullen, M. E., Barr, A. C., Collins, G. C., Selvans, M. M., and Pappalardo, R. T. (2009). Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory. Icarus, 200, 188–206.CrossRefGoogle Scholar
Walls, S. D., Lopes, R. M., Stofan, E. R., Wood, C. A., Radebaugh, J. L., Hörst, S. M., Stiles, B. W., Nelson, R. M., Kamp, L. W., Janssen, M. A., Lorenz, R. D., Lunine, J. I., Farr, T. G., Mitri, G., Paillou, P., Paganelli, F., and Mitchell, K. L. (2009). Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Geophys. Res. Lett., 36, L04203.Google Scholar
Watts, A. (2001). Isostasy and Flexure of the Lithosphere. New York: Cambridge University Press.Google Scholar
Watters, T. R., Schultz, R. A., and Robinson, M. S. (2000). Displacement–length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophys. Res. Lett., 27, 3659–3662.CrossRefGoogle Scholar
Weeks, W. F. and Cox, G. F. N. (1984). The mechanical properties of sea ice: A status report. Ocean Sci. Eng., 9, 135–198.Google Scholar
Willemann, R. J. (1984). Reorientation of planets with elastic lithospheres. Icarus, 60, 701–709.CrossRefGoogle Scholar
Wisdom, J. (2004). Spin-orbit secondary resonance dynamics of Enceladus. Astron. J., 128, 484–491.CrossRefGoogle Scholar
Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., and Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res., 109, E06005.CrossRefGoogle Scholar
Yoder, C. F. (1995). Astrometric and geodetic properties of Earth and the solar system. In Global Earth Physics, ed. Aherns, T. J.. Washington, DC: AGU Press, pp. 1–32.Google Scholar
Zahnle, K., Dones, L., and Levison, H. F. (1998). Cratering rates on the Galilean satellites. Icarus, 136, 202–222.CrossRefGoogle ScholarPubMed
Zahnle, K., Schenk, P., Sobieszczyk, S., Dones, L., and Levison, H. F. (2001). Differential cratering of synchronously rotating satellites by ecliptic comets. Icarus, 153, 111–129.CrossRefGoogle Scholar
Zahnle, K., Schenk, P., Levison, H., and Dones, L. (2003). Cratering rates in the outer solar system. Icarus, 163, 263–289.CrossRefGoogle Scholar
Zuber, M. T. and Parmentier, E. M. (1984). Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body: Implications for Ganymede's tectonic evolution. J. Geophys. Res., 89, B429-B437.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×