Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T08:27:57.513Z Has data issue: false hasContentIssue false

12 - New questions

Published online by Cambridge University Press:  12 August 2009

Mark Hallett
Affiliation:
NINDS, NIH, Bethesda, MD, USA
Eric M. Wassermann
Affiliation:
NINDS, NIH, Bethesda, MD, USA
Leonardo G. Cohen
Affiliation:
NINDS, NIH, Bethesda, MD, USA
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

The future is ever a misted landscape, no man foreknows it, but at cyclical turns There is a change felt in the rhythm of events

robinson jeffers Prescription of Painful Ends (l. 3–4). Oxford Book of American Verse, The. F.O. Matthiessen, ed. (1950) Oxford University Press.

The 1990s have witnessed a dramatic burst of knowledge about plasticity. Understanding the importance of plasticity and mechanisms of plasticity and the use of transcranial magnetic stimulation (TMS) as a tool to study human biology have developed at about the same time. It is clear from this book that contributions from TMS studies to plasticity have been enormous. What are the prospects for the future? It is impossible to know exactly what will happen. Simple extrapolations from what is happening now are relatively obvious, and to some extent have been noted in the earlier chapters. There may be new discoveries that will change directions.

It is clear that TMS will not be the only tool to study plasticity, many different techniques will play a role in both basic science and human investigations. For human studies, neuroimaging is very powerful, and EEG and MEG will likely play a greater role to improve time resolution. TMS will likely continue to be used to study the physiology of plasticity, but the bigger growth area may well be in the use of TMS to influence plasticity. Such uses may well expand to therapeutics. These are the topics that we will consider in some more detail.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 288 - 300
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, W. C. & Tate, W. P. (1997). Metaplasticity: a new vista across the field of synaptic plasticity. Prog. Neurobiol., 52: 303–323CrossRefGoogle ScholarPubMed
Abraham, W. C., Mason-Parker, S. E., Bear, M. F., Webb, S. & Tate, W. P. (2001). Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc. Natl Acad. Sci., USA, 98: 10924–10929CrossRefGoogle ScholarPubMed
Berardelli, A., Inghilleri, M., Rothwell, J. C.. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain Res., 122: 79–84CrossRefGoogle ScholarPubMed
Birbaumer, N., Lutzenberger, W., Montoya, P.. (1997). Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J. Neurosci., 17: 5503–5508CrossRefGoogle ScholarPubMed
Boroojerdi, B., Bushara, K. O., Corwell, B.. (2000). Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb. Cortex, 10: 529–534CrossRefGoogle ScholarPubMed
Bütefisch, C. M., Khurana, V., Davis, B., Kopylev, L. & Cohen, L. G. (1999). Modulation of use-dependent plasticity in human motor cortex. Soc. Neurosci. Abstr., 25: 384Google Scholar
Bütefisch, C. M., Davis, B. C., Wise, S. P.. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl Acad. Sci., USA, 97: 3661–3665CrossRefGoogle ScholarPubMed
Bütefisch, C. M., Davis, B. C., Sawaki, L.. (2002). Modulation of use-dependent plasticity by d-amphetamine. Ann. Neurol., 51: 59–68CrossRefGoogle ScholarPubMed
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Classen, J., Liepert, J., Wise, S. P., Hallett, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123CrossRefGoogle ScholarPubMed
Cohen, L. G., Celnik, P., Pascual-Leone, A.. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389: 180–183CrossRefGoogle ScholarPubMed
Conforto, A. B., Kaelin-Lang, A. & Cohen, L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann. Neurol., 51: 122–125CrossRefGoogle ScholarPubMed
Flor, H., Elbert, T., Knecht, S.. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375: 482–484CrossRefGoogle ScholarPubMed
Flor, H., Elbert, T., Muhlnickel, W., Pantev, C., Wienbruch, C. & Taub, E. (1998). Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp. Brain Res., 119: 205–212CrossRefGoogle ScholarPubMed
George, M. S., Wassermann, E. M., Williams, W. A.. (1995). Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport, 6: 1853–1856CrossRefGoogle ScholarPubMed
George, M. S., Nahas, Z., Molloy, M.. (2000). A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol. Psychiatry, 48: 962–970CrossRefGoogle ScholarPubMed
Ghabra, M. B., Hallett, M. & Wassermann, E. M. (1999). Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology, 52: 768–770CrossRefGoogle Scholar
Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci., 1: 64–68CrossRefGoogle ScholarPubMed
Hilgetag, C. C., Theoret, H. & Pascual-Leone, A. (2001). Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat. Neurosci., 4: 953–957CrossRefGoogle ScholarPubMed
Hoffman, R. E., Boutros, N. N., Hu, S., Berman, R. M., Krystal, J. H. & Charney, D. S. (2000). Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet, 355: 1073–1075CrossRefGoogle Scholar
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1991). Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. J. Neurophysiol., 65: 1435–1441CrossRefGoogle ScholarPubMed
Keck, M. E., Sillaber, I., Ebner, K.. (2000). Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur. J. Neurosci., 12: 3713–3720CrossRefGoogle ScholarPubMed
Klein, E., Kreinin, I., Chistyakov, A.. (1999). Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study. Arch. Gen. Psychiatry, 56: 315–320CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Pascual-Leone, A., Felician, O.. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284: 167–170CrossRefGoogle ScholarPubMed
McNamara, B., Ray, J. L., Arthurs, J. & Boniface, S. (2001). Transcranial magnetic stimulation for depression and other psychiatric disorders. Psychol. Med., 31: 1141–1146CrossRefGoogle ScholarPubMed
Modugno, N., Nakamura, Y., MacKinnon, C. D.. (2001). Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp. Brain Res., 140: 453–459CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Houser, C. M., Reese, K.. (1993). Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr. Clin. Neurophysiol., 89: 120–130CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Valls-Solé, J., Brasil-Neto, J., Cammarota, A., Grafman, J. & Hallett, M. (1994a). Akinesia in Parkinson's Disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology, 44: 892–898CrossRefGoogle Scholar
Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M. & Hallett, M. (1994b). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858CrossRefGoogle Scholar
Pons, T. P. (1998). Reorganizing the brain. Nat. Med., 4: 561–562CrossRefGoogle Scholar
Ramachandran, V. S., Stewart, M. & Rogers-Ramachandran, D. C. (1992). Perceptual correlates of massive cortical reorganization. Neuroreport, 3: 583–586CrossRefGoogle ScholarPubMed
Ridding, M. C. & Rothwell, J. C. (1997). Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr. Clin. Neurophysiol., 105: 340–344CrossRefGoogle ScholarPubMed
Roth, B. J., Maccabee, P. J., Eberle, L. P.. (1994). In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve. Electroencephalogr. Clin. Neurophysiol., 93: 68–74CrossRefGoogle ScholarPubMed
Samii, A., Chen, R., Wassermann, E. M. & Hallett, M. (1998). Phenytoin does not influence postexercise facilitation of motor evoked potentials. Neurology, 50: 291–293CrossRefGoogle Scholar
wSanger, T. D., Garg, R. R. & Chen, R. (2001). Interactions between two different inhibitory systems in the human motor cortex. J. Physiol., 530: 307–317CrossRefGoogle ScholarPubMed
Sawaki, L., Boroojerdi, B., Kaelin-Lang, A.. (2002). Cholinergic influences on use-dependent plasticity. J. Neurophysiol., 87: 166–171CrossRefGoogle ScholarPubMed
Shimamoto, H., Morimitsu, H., Sugita, S., Nakahara, K. & Shigemori, M. (1999). Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson's disease. Rinsho Shinkeigaku, 39: 1264–1267Google ScholarPubMed
Siebner, H. R., Mentschel, C., Auer, C. & Conrad, B. (1999a). Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. Neuroreport, 10: 589–594CrossRefGoogle Scholar
Siebner, H. R., Tormos, J. M., Ceballos-Baumann, A. O.. (1999b). Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp. Neurology, 52: 529–537CrossRefGoogle Scholar
Siebner, H. R., Rossmeier, C., Mentschel, C., Peinemann, A. & Conrad, B. (2000). Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson's disease. J. Neurol. Sci., 178: 91–94CrossRefGoogle ScholarPubMed
Sommer, M., Tergau, F., Wischer, S. & Paulus, W. (2001). Paired-pulse repetitive transcranial magnetic stimulation of the human motor cortex. Exp. Brain Res., 139: 465–472CrossRefGoogle ScholarPubMed
Speer, A. M., Kimbrell, T. A., Wassermann, E. M.. (2000). Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol. Psychiatry, 48: 1133–1141CrossRefGoogle ScholarPubMed
Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R. & Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123: 572–584CrossRefGoogle ScholarPubMed
Tergau, F., Naumann, U., Paulus, W. & Steinhoff, B. J. (1999). Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet, 353: 2209CrossRefGoogle ScholarPubMed
Touge, T., Gerschlager, W., Brown, P. & Rothwell, J. C. (2001). Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?Clin. Neurophysiol., 112: 2138–2145CrossRefGoogle ScholarPubMed
Triggs, W. J., McCoy, K. J., Greer, R.. (1999). Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol. Psychiatry, 45: 1440–1446CrossRefGoogle ScholarPubMed
Wassermann, E. M. & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin. Neurophysiol., 112: 1367–1377CrossRefGoogle ScholarPubMed
Wassermann, E. M., Grafman, J., Berry, C.. (1996). Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol., 101: 412–417CrossRefGoogle ScholarPubMed
Wu, T., Sommer, M., Tergau, F. & Paulus, W. (2000). Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci. Lett., 287, 37–40CrossRefGoogle ScholarPubMed
Yang, T. T., Gallen, C. C., Ramachandran, V. S., Cobb, S., Schwartz, B. J. & Bloom, F. E. (1994). Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. Neuroreport, 5: 701–704CrossRefGoogle ScholarPubMed
Yaroslavsky, Y., Grisaru, N., Chudakov, B. & Belmaker, R. H. (1999). Is TMS therapeutic in mania as well as in depression?Electroencephalogr. Clin. Neurophysiol. Suppl., 51: 299–303Google ScholarPubMed
Ziemann, U., Corwell, B. & Cohen, L. G. (1998a). Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J. Neurosci., 18: 1115–1123CrossRefGoogle Scholar
Ziemann, U., Hallett, M. & Cohen, L. G. (1998b). Mechanisms of deafferentation-induced plasticity in human motor cortex. J. Neurosci., 18xs: 7000–7007CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×