Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T14:55:54.450Z Has data issue: false hasContentIssue false

4 - Practice-induced plasticity in the human motor cortex

Published online by Cambridge University Press:  12 August 2009

Joseph Classen
Affiliation:
Human Cortical Physiology Laboratory, Department of Neurology, Bayerische Julius-Maximilians Universität, Würzburg, Germany
Leonardo G. Cohen
Affiliation:
Human Cortical Physiology Section, NINDS, National Institutes of Health, Bethesda, MD, USA
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Introduction

It is common knowledge that ‘practice makes perfect’. Many types of human motor behaviour seem to rely heavily on the fact that the performance of subsequent movements is facilitated by prior performance of similar movements. Therefore, the capacity to build a memory trace of previously practised movements appears to be a fundamental property of the human motor system. Recent studies have focused on this theme in an attempt to gain insight into the physiology of motor memory. Such understanding may contribute to the development of techniques to promote recovery of function following brain damage in humans.

Use-dependent plasticity

Since the 1990s, numerous reports, by employing TMS, demonstrated plasticity induced by motor learning, motor practice or use. One of the earliest reports showed that the excitability of the muscle representation of the ‘reading’ finger is increased in Braille readers (Pascual-Leone et al., 1993). Pearce and coworkers found that, in highly trained Olympic badminton players, the excitability of the first dorsal interosseus muscle of the skilled hand is increased and its topographical representation is altered when compared to the unskilled hand or to the representations in untrained players (Pearce et al., 2000). These studies provided evidence that the organization of motor activity is modifiable. They also raised questions about the particular factors involved in long-term practice that were instrumental in triggering these profound changes.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 90 - 106
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. T., Donoghue, J. P. & Sanes, J. N. (1999). Gaze direction modulates finger movement activation patterns in human cerebral cortex. J. Neurosci., 19: 10044–10052CrossRefGoogle ScholarPubMed
Bütefisch, C. M., Davis, B. C. & Wise, S. P. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl Acad. Sci., USA, 97: 3661–3665CrossRefGoogle ScholarPubMed
Bütefisch, C. M., Sawaki, L., Davis, B. C.. (2002). Modulation of use-dependent plasticity by d-amphetamine. Ann. Neurol., 51: 59–68CrossRefGoogle ScholarPubMed
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Classen, J., Liepert, A., Wise, S. P., Hallett, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123CrossRefGoogle ScholarPubMed
Classen, J., Liepert, J., Hallett, M. & Cohen, L. G. (1999). Plasticity of movement representation in the human motor cortex. In Transcranial Magnetic Stimulation, ed. W. Paulus, J. C. Rothwell, M. Hallett & P. M. Rossini, vol. 51, pp. 162–173. Amsterdam: Elsevier Press
Cohen, L. G., Gerloff, C., Faiz, L.. (1996). Directional modulation of motor cortex plasticity induced by synchronicity of motor outputs in humans. Soc. Neurosci. Abstr., 22: 576.11Google Scholar
Facchini, S., Romani, M., Tinazzi, M. & Aglioti, S. M. (2002). Time-related changes of excitability of the human motor system contingent upon immobilisation of the ring and little fingers. Clin. Neurophysiol., 113: 367–375CrossRefGoogle ScholarPubMed
Feeney, D. M. (1997). From laboratory to clinic: noradrenergic enhancement of physical therapy for stroke or trauma patients. Adv. Neurol., 73: 383–394Google ScholarPubMed
Hagemann, G., Redecker, C., Neumann-Haefelin, T., Freund, H. J. & Witte, O. W. (1998). Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann. Neurol., 44: 255–258CrossRefGoogle ScholarPubMed
Hasselmo, M. E. & Barkai, E. (1995). Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J. Neurosci., 15: 6592–6604CrossRefGoogle Scholar
Hess, G., Aizenman, C. D. & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol., 75: 1765–1778CrossRefGoogle ScholarPubMed
Jacobs, K. M. & Donoghue, J. P. (1991). Reshaping the cortical motor map by unmasking latent intracortical connections. Science, 251: 944–947CrossRefGoogle ScholarPubMed
Kujirai, T., Caramia, M. D., Rothwell, J. C.. (1993). Corticocortical inhibition in human motor cortex. J. Physiol., 471: 501–519CrossRefGoogle ScholarPubMed
Liepert, J., Tegenthoff, M. & Malin, J. P. (1995). Changes of cortical motor area size during immobilization. Electroencephalogr. Clin. Neurophysiol., 97: 382–386CrossRefGoogle ScholarPubMed
Liepert, J., Classen, J., Cohen, L. G. & Hallett, M. (1998). Task-dependent changes of intracortical inhibition. Exp. Brain Res., 118: 421–426CrossRefGoogle ScholarPubMed
Liepert, J., Terborg, C. & Weiller, C. (1999). Motor plasticity induced by synchronized thumb and foot movements. Exp. Brain Res., 125: 435–439CrossRefGoogle ScholarPubMed
McNevin, N. H., Wulf, G. & Carlson, C. (2000). Effects of attentional focus, self-control, and dyad training on motor learning: implications for physical rehabilitation. Phys. Ther., 80: 373–385CrossRefGoogle ScholarPubMed
Maalouf, M., Dykes, R. W. & Miasnikov, A. A. (1998). Effects of D-AP 5 and NMDA microiontophoresis on associative learning in the barrel cortex of awake rats. Brain Res., 793: 149–168CrossRefGoogle Scholar
Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Exp. Brain Res., 136: 431–438CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Wissel, J.. (2002). Early consolidation in human primary motor cortex. Nature, 415: 640–644CrossRefGoogle ScholarPubMed
Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol., 527: 633–639CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of braille readers. Ann. Neurol., 34: 33–37CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M. & Hallett, M. (1994). Responses to rapid rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Nguyet, D., Cohen, L. G.Brasil-Neto, J. P., Cammarota, A. & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol., 74: 1037–1045CrossRefGoogle ScholarPubMed
Pearce, A. J., Thickbroom, G. W., Byrnes, M. L. & Mastaglia, F. L. (2000). Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp. Brain Res., 130: 238–243CrossRefGoogle ScholarPubMed
Reynolds, C. & Ashby, P. (1999). Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology, 53: 730–735CrossRefGoogle ScholarPubMed
Ridding, M. C., Taylor, J. L. & Rothwell, J. C. (1995). The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J. Physiol. (Lond.), 487: 541–548CrossRefGoogle ScholarPubMed
Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. (2000). Learning-induced LTP in neocortex. Science, 290: 533–536CrossRefGoogle ScholarPubMed
Kranz, Rosen K., Nitsche, M. A., Tergau, F. & Paulus, W. (2000). Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosc. Lett., 296: 61–63Google Scholar
Sawaki, L., Boroojerdi, B., Kaelin-Lang, A. (2002a). Cholinergic influences on use-dependent plasticity. J. Neurophysiol., 87: 166–171CrossRefGoogle Scholar
Sawaki, L., Cohen, L. G., Classen, J., Davis, B. & Butefisch, C. M. (2002b). Enhancement of use-dependent plasticity by d-amphetamine. Neurology, 59: 1262–1264CrossRefGoogle Scholar
Schiene, K., Bruehl, C., Zilles, K.. (1996). Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J. Cereb. Blood Flow Metab., 16: 906–914CrossRefGoogle ScholarPubMed
Schwenkreis, P., Pleger, B., Hoffken, O., Malin, J. P. & Tegenthoff, M. (2001). Repetitive training of a synchronised movement induces short-term plastic changes in the human primary somatosensory cortex. Neurosci. Lett., 312: 99–102CrossRefGoogle ScholarPubMed
Wolters, A., Kunesch, E., Benecke, R. & Classen, J. (2001). Zeitgang verschiedener Parameter kortikaler Exzitabilitätsveränderungen nach repetitiven Handgelenksbewegungen. Akt. Neurol., Suppl. 28: 68Google Scholar
Zanette, G., Tinazzi, M., Bonato, C.. (1997). Reversible changes of motor cortical outputs following immobilization of the upper limb. Electroencephalogr. Clin. Neurophysiol., 105: 269–279CrossRefGoogle ScholarPubMed
Ziemann, U., Muellbacher, W., Hallett, M. & Cohen, L. G. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain, 124: 1171–1181CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×