Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T14:58:35.716Z Has data issue: false hasContentIssue false

5 - Skill learning

Published online by Cambridge University Press:  12 August 2009

Edwin M. Robertson
Affiliation:
Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA
Hugo Theoret
Affiliation:
Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA
Alvaro Pascual-Leone
Affiliation:
Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Plasticity as an intrinsic property of the brain

In the course of brain development, very complex processes take place to establish an intricate and highly specific network of millions of cells interconnected by billions of dendritic arborizations and synapses. It is reasonable to think that the brain might be resistant to change once development is completed, given the daunting complexity of these processes and of the resulting ‘end-product’. This notion of a rather static and unchanging brain was the pervasive belief for many years. However, in the meantime, it has become clear that this notion is wrong. The brain does not only undergo reorganization, but it is constantly reorganizing (Fuster, 1995; Kaas, 1997) and this entire volume provides ample support for the emerging concept of a dynamically changing brain.

The brain's capacity to change is referred to as plasticity and we might think of it as an intrinsic property of the human nervous system that persists throughout the human lifespan. An obvious example to lend support to this claim is the acquisition of new skills, to which the present chapter is devoted. The brain is designed to be able to change in response to changes in the environment. This is the mechanism for growth and development, but also for learning. In the process of learning, the brain has to change to be able to code for, and appropriately implement, the new knowledge.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 107 - 134
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bara-Jimenez, W., Shelton, P., Sanger, T. D. & Hallett, M. (2000). Sensory discrimination capabilities in patients with focal hand dystonia. Ann. Neurol., 43: 377–3803.0.CO;2-2>CrossRefGoogle Scholar
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Chollet, F. (2000). Plasticity of the adult human brain. In Brain Mapping: The Systems, ed. J. C. Mazziotta, A. W. Toga & R. S. Frackowiak, pp. 621–638. San Diego: Academic PressCrossRef
Chollet, F. & Weiller, C. (2000). Recovery of neurological function. In Brain Mapping: The Disorders, ed. J. C. Mazziotta, A. W. Toga & R. S. Frackowiak, pp. 587–597. San Diego: Academic PressCrossRef
Doyon, J., Owen, A. M., Petrides, M., Sziklas, V. & Evans, A. C. (1996). Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur. J. Neurosci., 8: 637–648CrossRefGoogle ScholarPubMed
Doyon, J. (1997). Skill learning. Int. Rev. Neurobiol., 41: 273–294CrossRefGoogle ScholarPubMed
Doyon, J., Gaudreau, D., Laforce, R. Jr.. (1997). Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn., 34: 218–245CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270: 305–307CrossRefGoogle ScholarPubMed
Elman, J. L. (1990). Finding structure in time. Cogn. Sci., 14: 179–211CrossRefGoogle Scholar
Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G. & Mardsen, C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol. (Lond.), 453: 525–546CrossRefGoogle ScholarPubMed
Fuster, J. M. (1995). Memory in the cerebral cortex. An Empirical Approach to Neural Networks in the Human and Nonhuman Primate. Cambridge, MA: The MIT Press
Goldman-Rakic, P. (1987). Circuitry of primate prefrontal cortex and by representation of memory and the regulation of behaviour by representational memory. In Handbook of Physiology, ed. F. Plum & V. Mountcastle, vol. 5, pp. 373–417. Washington: American Physiological Society, Washington
Goldman-Rakic, P. (1998). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. In The Prefrontal Cortex: Executive and Cognitive Functions, ed. A. C. Roberts, T. W. Robbins & L. Weiskrantz, pp. 87–102. Oxford: Oxford University PressCrossRef
Gomez-Beldarrain, M., Grafman, J., Pascaul-Leone, A. & Garcia-Monoco, J. C. (1999). Procedural learning is impaired in patients with prefrontal lesions. Neurology, 52: 1853–1860CrossRefGoogle Scholar
Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S. & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J. Neurosci., 12: 2542–2548CrossRefGoogle ScholarPubMed
Grafton, S. T., Woods, R. P. & Tyszka, M. (1994). Functional imaging of procedural motor learning: relating cerebral blood flow with individual subject performance. Hum. Brain Mapp., 1: 221–234CrossRefGoogle ScholarPubMed
Grafton, S. T., Hazeltine, E. & Ivry, R. (1995). Functional anatomy of motor sequence learning in humans. J. Cogn. Neurosci., 7: 497–510CrossRefGoogle Scholar
Grafton, S. T., Hazeltine, E. & Ivry, R. B. (1998). Abstract and effector specific representations of motor sequences identified with PET. J. Neurosci., 18: 9420–9428CrossRefGoogle Scholar
Hazeltine, E., Grafton, S. T. & Ivry, R. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120: 123–140CrossRefGoogle ScholarPubMed
Hazeltine, E. (2001). Ipsilateral sensorimotor regions and motor sequence learning. Trends Cogn. Sci., 5: 281–282CrossRefGoogle ScholarPubMed
Hikosaka, O., Nakahara, H., Rand, M. K.. (1999). Parallel neural networks for learning sequential procedures. Trends Neurosci., 22: 464–471CrossRefGoogle Scholar
Hilgetag, C. C., Theoret, H. & Pascual-Leone, A. (2001). Enhanced visual spatial attention ispsilateral to rTMS induces ‘virtual lesions’ of human parietal cortex. Nature Neurosci., 4: 953–957CrossRefGoogle Scholar
Honda, M., Deiber, M. P., Ibanez, V., Pascual-Leone, A., Zhuang, P. & Hallett, M. (1998). Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain, 121: 2159–2173CrossRefGoogle ScholarPubMed
Jordan, M. I. (1996). Serial Order: A Parallel Distributed Processing Approach. Hillside, NJ: Erlbum
Kaas, J. H. (1997). Functional Plasticity in Adult Cortex, vol. 9. Orlando, FL: Academic Press
Kaas, J. H. (2000). The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates. Prog. Brain Res., 128: 173–179CrossRefGoogle ScholarPubMed
Karni, A. & Bertini, G. (1997). Learning perceptual skills: behavioural probes into adult cortical plasticity. Curr. Opin. Neurobiol., 7: 530–535CrossRefGoogle ScholarPubMed
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377: 155–158Google Scholar
Kiriakopoulos, E., Kauffman, T., Hamilton, R. & Pascual-Leone, A. (1999). Relationship between tactile acuity and cortical activation in early blind subjects. Neuroimage, 9: S571Google Scholar
Kosslyn, S. M., Pascual-Leone, A., Felician, O.. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284: 167–170CrossRefGoogle ScholarPubMed
Kujirai, T., Caramia, M. D., Rothwell, J. C., Day, B. L., Thompson, B. D. & Ferbert, A. (1993). Cortico-cortical inhibition in human motor cortex. J. Physiol. (Lond.), 471: 501–520CrossRefGoogle Scholar
Levy, R. & Goldmann-Rakic, P. S. (2000). Segregation of working memory function within the dorsolateral prefrontal cortex. Exp. Brain Res., 133: 23–32CrossRefGoogle Scholar
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. (2000). Modulation of cortico-spinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol., 111: 800–805CrossRefGoogle Scholar
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. (1996). Throwing while looking through prisms. II. Specificity and storage of multiple gaze throw calibrations. Brain, 119: 1199–1211CrossRefGoogle ScholarPubMed
Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J. & Pascual-Leone, A. (2002). Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cereb. Cortex, in pressCrossRef
Nissen, M. J. & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cogn. Psychol., 19: 1–32CrossRefGoogle Scholar
Pascual-Leone, A. (2001). The brain that plays music and is changed by it. In Music and the Brain, ed. R. Zatorre and I. Peretz. New York: New York Academy of SciencesCrossRef
Pascual-Leone, A. & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292: 510–512CrossRefGoogle Scholar
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of braille readers. Ann. Neurol., 34: 33–37CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Grafman, J. & Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263: 1287–1289CrossRefGoogle Scholar
Pascual-Leone, A., Nguyet, D., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A. & Hallett, M. (1995a). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol., 74: 1037–1045CrossRefGoogle Scholar
Pascual-Leone, A., Wassermann, E. M., Sadato, N. & Hallett, M. (1995b). The role of reading activity on the modulation of motor cortical outputs to the reading hand in braille readers. Ann. Neurol., 38: 910–915CrossRefGoogle Scholar
Pascual-Leone, A., Grafman, J. & Hallett, M. (1995c). Procedural learning and prefrontal cortex. Ann. NY Acad. Sci., 769: 61–70CrossRefGoogle Scholar
Pascual-Leone, A., Wassermann, E. M., Grafman, J. & Hallett, M. (1996). The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp. Brain Res., 107: 479–485CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Hamilton, R., Tormos, J. M., Keenan, J. & Catala, M. D. (1998a). Neuroplasticity in the adjustment to blindness. Neuroplasticity: Building a Bridge from the Laboratory to the Clinic, ed. J. Grafman & Y. Christen, pp. 93–108. Munich & New York: Springer-Verlag
Pascual-Leone, A., Tormos, J. M., Keenan, J., Tarazona, F., Canete, C. & Catala, M. D. (1998b). Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol., 15: 333–343CrossRefGoogle Scholar
Pascual-Leone, A., Tarazona, F. & Catalá, M. D. (1999). Applications of transcranial magnetic stimulation in studies on motor learning. In Transcranial Magnetic Stimulation, Supplement of Electroencephalography and Clinical Neurophysiology, EEG Suppl. 51, ed. W. Paulus, M. Hallett, P. M. Rossini & J. C. Rothwell
Pearce, A. J., Thickbroom, G. W., Byrnes, M. L. & Mastaglia, F. L. (2000). Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp. Brain Res., 130: 238–243CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2000). Imaging brain plasticity: conceptual and methodological issues – a theoretical review. Neuroimage, 12: 1–13CrossRefGoogle Scholar
Pujol, J., Roset-Llobet, J., Rosines-Cubells, D.. (2000). Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. Neuroimage, 12: 257–267CrossRefGoogle Scholar
Rauch, S. L., Savage, C. R., Brown, H. D.. (1995). A PET investigation of implicit and explicit sequence learning. Hum. Brain Mapp., 3: 271–286CrossRefGoogle Scholar
Ridding, M. C., Brouwer, B. & Nordstrom, M. A. (2000). Reduced interhemispheric inhibition in musicians. Exp. Brain Res., 133: 249–253CrossRefGoogle Scholar
Robertson, E. M. & Miall, R. C. (1999). Visuomotor adaptation during inactivation of the dentate nucleus. Neuroreport, 10: 1029–1034CrossRefGoogle Scholar
Robertson, E. M. & Pascual-Leone, A. (2001). Aspects of sensory guidance in sequence learning. Exp. Brain Res., 137: 336–345CrossRefGoogle Scholar
Robertson, E. M., Tormos, J. M., Maeda, F. & Pascual-Leone, A. (2001). The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cereb. Cortex, 11: 628–635CrossRefGoogle Scholar
Romero, R., Anshel, D., Sparing, R., Gangitano, M. & Pascual-Leone, A. (2002). Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin. Neurophysiol., 113: 101–107CrossRefGoogle ScholarPubMed
Schacter, D. L. & Buckner, R. L. (1998). On the relations among priming, conscious recollection, and intentional retrieval: evidence from neuroimaging research. Neurobiol. Learn. Mem., 70: 284–303CrossRefGoogle ScholarPubMed
Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33: 1047–1055CrossRefGoogle ScholarPubMed
Schnitzler, A., Kessler, K. R. & Benecke, R. (1996). Transcallosally mediated inhibition of interneurons within human primary motor cortex. Exp. Brain Res., 112: 381–391CrossRefGoogle ScholarPubMed
Theoret, H., Haque, J. & Pascual-Leone, A. (2001). Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neursci. Lett., 306: 29–32CrossRefGoogle Scholar
Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P. & Pascual-Leone, A. (2000). Tactile spatial resolution in blind braille readers. Neurology, 54: 2230–2236CrossRefGoogle Scholar
van Mier H. (2000). Human learning. In Brain Mapping: The Systems, ed. J. C. Mazziotta, A. W. Toga & R. S. Frackowiak, pp. 605–620. San Diego: Academic Press
Willingham, D. B., Nissen, M. J. & Bullemer, P. (1989). On the development of procedural knowledge. J. Exp. Psychol. Learn. Mem. Cogn., 15: 1047–1060CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Skill learning
    • By Edwin M. Robertson, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA, Hugo Theoret, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA, Alvaro Pascual-Leone, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Book: Plasticity in the Human Nervous System
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544903.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Skill learning
    • By Edwin M. Robertson, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA, Hugo Theoret, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA, Alvaro Pascual-Leone, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Book: Plasticity in the Human Nervous System
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544903.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Skill learning
    • By Edwin M. Robertson, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA, Hugo Theoret, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA, Alvaro Pascual-Leone, Behavioral Neurology Unit, Beth Israel Medical Center, Boston, MA, USA
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Book: Plasticity in the Human Nervous System
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544903.006
Available formats
×